Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Mol Cell Biol ; 44(6): 245-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38804232

RESUMEN

Betaine-homocysteine S-methyltransferase (BHMT) is one of the most abundant proteins in the liver and regulates homocysteine metabolism. However, the molecular mechanisms underlying Bhmt transcription have not yet been elucidated. This study aimed to assess the molecular mechanisms underlying Bhmt transcription and the effect of BHMT deficiency on metabolic functions in the liver mediated by liver receptor homolog-1 (LRH-1). During fasting, both Bhmt and Lrh-1 expression increased in the liver of Lrh-1f/f mice; however, Bhmt expression was decreased in LRH-1 liver specific knockout mice. Promoter activity analysis confirmed that LRH-1 binds to a specific site in the Bhmt promoter region. LRH-1 deficiency was associated with elevated production of reactive oxygen species (ROS), lipid peroxidation, and mitochondrial stress in hepatocytes, contributing to hepatic triglyceride (TG) accumulation. In conclusion, this study suggests that the absence of an LRH-1-mediated decrease in Bhmt expression promotes TG accumulation by increasing ROS levels and inducing mitochondrial stress. Therefore, LRH-1 deficiency not only leads to excess ROS production and mitochondrial stress in hepatocytes, but also disrupts the methionine cycle. Understanding these regulatory pathways may pave the way for novel therapeutic interventions against metabolic disorders associated with hepatic lipid accumulation.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa , Hepatocitos , Hígado , Metionina , Ratones Noqueados , Especies Reactivas de Oxígeno , Receptores Citoplasmáticos y Nucleares , Triglicéridos , Animales , Hígado/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Betaína-Homocisteína S-Metiltransferasa/genética , Hepatocitos/metabolismo , Metionina/metabolismo , Triglicéridos/metabolismo , Regiones Promotoras Genéticas/genética , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Peroxidación de Lípido
2.
Vet Sci ; 11(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38787160

RESUMEN

Rotavirus is the main causative agent of viral gastroenteritis among young animals worldwide. Currently, no clinically approved or effective antiviral drugs are available to combat rotavirus infections. Herein, we evaluated the anti-rotaviral activities of extracts and bavachin isolated from Psoralea corylifolia L. (Fabaceae) (P. corylifolia) against the bovine rotavirus G8P[7] and porcine rotavirus G5P[7] in vitro. Two assay strategies were performed: (1) a virucidal assay to reduce viral infectivity by virus neutralization and (2) a post-treatment assay to assess viral replication suppression. The results from the virucidal assay showed that the extracts and bavachin did not exert anti-rotaviral activities. In the follow-up analysis after treatment, bavachin exhibited robust antiviral efficacy, with 50% effective concentration (EC50) values of 10.6 µM (selectivity index [SI] = 2.38) against bovine rotavirus G8P[7] and 13.0 µM (SI = 1.94) against porcine rotavirus G5P[7]. Bavachin strongly suppressed viral RNA synthesis in the early (6 h) and late stages (18 h) after rotaviral infection. These findings strongly suggest that bavachin may have hindered the virions by effectively inhibiting the early stages of the virus replication cycle after rotaviral infection. Furthermore, confocal imaging showed that bavachin suppressed viral protein synthesis, notably that of the rotaviral protein (VP6). These results suggest that bavachin has strong antiviral activity against rotaviruses, inhibits viral replication, and is a candidate natural therapeutic drug targeting rotaviral infection. The utilization of bavachin isolated from P. corylifolia may contribute to decreased mortality rates, lower medication expenses, and enhanced economic viability in domestic farms.

3.
Curr Issues Mol Biol ; 46(3): 2444-2455, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38534770

RESUMEN

Diallyl disulfide (DADS) is a well-known principal functional component derived from garlic (Allium sativum) that has various health benefits. Previously, we identified a 67-kDa laminin receptor, a receptor for oolong tea polyphenol oolonghomobisflavan B (OHBFB). However, its molecular mechanisms still remain to be elucidated. Here, we show that DADS synergistically enhanced the effect of the oolong tea polyphenol oolonghomobisflavan B (OHBFB), which induces apoptosis in acute myeloid leukemia (AML) cancer cells without affecting normal human peripheral blood mononuclear cells (PBMCs). The underlying mechanism of OHBFB-induced anti-AML effects involves the upregulation of the 67-kDa laminin receptor/endothelial nitric oxide synthase/cyclic guanosine monophosphate (cGMP)/protein kinase c delta (PKCδ)/acid sphingomyelinase (ASM)/cleaved caspase-3 signaling pathway. In conclusion, we show that the combination of OHBFB and DADS synergistically induced apoptotic cell death in AML cells through activation of 67LR/cGMP/PKCδ/ASM signaling pathway. Moreover, in this mechanism, we demonstrate DADS may reduce the enzyme activity of phosphodiesterase, which is a negative regulator of cGMP that potentiates OHBFB-induced AML apoptotic cell death without affecting normal PBMCs.

4.
FEBS Open Bio ; 13(11): 2147-2156, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37730921

RESUMEN

(-)-Epigallocatechin-3-O-gallate (EGCG) is one of the major components of green tea polyphenol. Previous studies have shown that EGCG induces cancer-specific cell death in vitro and in vivo without causing severe side effects. However, the anti-cancer effect of EGCG alone is limited. 5,7-dimethoxyflavone (5,7-DMF), one of the principal functional components of black ginger (Kaempferia parviflora), also exerts anti-cancer effects. Here, we show that 5,7-DMF synergistically enhances the anti-cancer effect of EGCG in multiple myeloma cells by potentiating EGCG-induced intracellular cyclic guanosine monophosphate (cGMP) production. Moreover, the combination of EGCG and 5,7-DMF induces apoptotic cell death in multiple myeloma cells, and this is accompanied by activation of the cGMP/acid sphingomyelinase (ASM)/cleaved caspase-3 pathway. In conclusion, we have shown that 5,7-DMF enhances the anti-cancer effect of EGCG by upregulating cGMP in multiple myeloma cells.


Asunto(s)
Catequina , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Apoptosis , Catequina/farmacología
5.
Life Sci ; 332: 122107, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739164

RESUMEN

AIMS: Prolonged high levels of cytokines, glucose, or free fatty acids are associated with diabetes, elevation of cytosolic Ca2+ concentration ([Ca2+]C), and depletion of Ca2+ concentration in the endoplasmic reticulum (ER) of pancreatic beta cells. This Ca2+ imbalance induces ER stress and apoptosis. Lupenone, a lupan-type triterpenoid, is beneficial in diabetes; however, its mechanism of action is yet to be clarified. This study evaluated the protective mechanism of lupenone against thapsigargin-induced ER stress and apoptosis in pancreatic beta cells. MATERIALS AND METHODS: MIN6, INS-1, and native mouse islet cells were used. Western blot for protein expressions, measurement of [Ca2+]C, and in vivo glucose tolerance test were mainly performed. KEY FINDINGS: Thapsigargin increased the protein levels of cleaved caspase 3, cleaved PARP, and the phosphorylated form of JNK, ATF4, and CHOP. Thapsigargin increased the interaction between stromal interaction molecule1 (Stim1) and Orai1, enhancing store-operated calcium entry (SOCE). SOCE is further activated by protein tyrosine kinase 2 (Pyk2), which is Ca2+-dependent and phosphorylates the tyrosine residue at Y361 in Stim1. Lupenone inhibited thapsigargin-mediated Pyk2 activation, suppressed [Ca2+]C, ER stress, and apoptosis. Lupenone restored impaired glucose-stimulated insulin secretion effectuated by thapsigargin and glucose intolerance in a low-dose streptozotocin-induced diabetic mouse model. SIGNIFICANCE: These results suggested that lupenone attenuated thapsigargin-induced ER stress and apoptosis by inhibiting SOCE; this may be due to the hindrance of Pyk2-mediated Stim1 tyrosine phosphorylation. In beta cells that are inevitably exposed to frequent [Ca2+]C elevation, the attenuation of abnormally high SOCE would be beneficial for their survival.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Lupanos , Triterpenos , Animales , Ratones , Apoptosis , Calcio/metabolismo , Línea Celular , Diabetes Mellitus/metabolismo , Estrés del Retículo Endoplásmico , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Fosforilación , Tapsigargina/efectos adversos , Triterpenos/metabolismo , Tirosina/metabolismo , Lupanos/farmacología
6.
Phytomedicine ; 118: 154970, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516056

RESUMEN

BACKGROUND: Oolonghomobisflavans are unique polyphenols found in oolong teas. Oolonghomobisflavan B (OHBFB), a dimer of (-)-epigallocatechin-3-O-gallate (EGCG), is an active compound found in green tea. PURPOSE: OHBFB has been reported to exert an inhibitory effect on lipase enzyme activity. However, little is known regarding its intercellular signaling induction effect. Further, there are no reports describing the anti-cancer effects of OHBFB. METHODS: The effect of OFBFB on B16 melanoma cells was evaluated by cell counting, and its mechanisms were determined by western blot analysis with or without protein phosphatase 2A (PP2A) inhibitor treatment. Intracellular cyclic adenosine monophosphate (cAMP) levels were evaluated by time-resolved fluorescence resonance energy transfer analysis. Quartz crystal microbalance (QCM) analysis was performed to assess the binding of OHBFB to 67LR. RESULTS: Cell growth assay and western blot analyses showed that OHBFB inhibited melanoma cell growth, followed by myosin phosphatase target subunit 1 (MYPT1) and myosin regulatory light chain (MRLC) dephosphorylation via protein phosphatase 2A (PP2A)-dependent mechanisms. These effects are mediated by intracellular cAMP- and protein kinase A (PKA) A-dependent mechanisms. QCM analysis identified the 67-kDa laminin receptor (67LR) as an OHBFB receptor with a Kd of 3.7 µM. We also demonstrated for the first time that OHBFB intake suppresses tumor growth in vivo. CONCLUSIONS: Taken together, these results indicate that the cAMP/PKA/PP2A/MYPT1/MRLC pathway is a key mediator of melanoma cell growth inhibition following OHBFB binding to 67LR and that OHBFB suppresses tumor growth in vivo.


Asunto(s)
Catequina , Melanoma Experimental , Animales , Humanos , Proteína Fosfatasa 2/metabolismo , Polifenoles/farmacología , Catequina/farmacología , Ciclo Celular , Melanoma Experimental/tratamiento farmacológico , Receptores de Laminina/química , Receptores de Laminina/metabolismo
7.
Curr Issues Mol Biol ; 45(3): 2284-2295, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36975517

RESUMEN

Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera exhibited strong anti-influenza activity, with 50% inhibitory concentration values of 13.6 and 18.3 µM against H1N1, 12.8 and 10.8 µM against H9N2, and 29.2 µM (only compound 2) against H3N2 in the post-treatment assay, respectively. During the viral replication stages, the two compounds demonstrated stronger inhibition of viral RNA and protein in the late stages (12-18 h) than in the early stages (3-6 h). Moreover, both compounds inhibited PI3K-Akt signaling, which participates in viral replication during the later stages of infection. The ERK signaling pathway is also related to viral replication and was substantially inhibited by the two compounds. In particular, the inhibition of PI3K-Akt signaling by these compounds inhibited viral replication by sabotaging influenza ribonucleoprotein nucleus-to-cytoplasm export. These data indicate that compounds 1 and 2 could potentially reduce viral RNA and viral protein levels by inhibiting the PI3K-Akt signaling pathway. Our results suggest that abietane diterpenoids isolated from T. nucifera may be potent antiviral candidates for new influenza therapies.

8.
J Nat Med ; 77(2): 363-369, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36494586

RESUMEN

Many patients with allergies have anxiety about taking anti-allergic medicines due to their side effects and increased medical expenses. Thus, developing functional foods/agricultural products for allergy prevention is strongly desired. In this study, we revealed that a Citrus flavanone, hesperetin, amplified IgE/antigen-mediated degranulation-inhibitory potency of anti-allergic catechin, (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3''Me), in the rat basophilic/mast cell line RBL-2H3. Hesperetin also significantly elevated the activation of acid sphingomyelinase (ASM), essential for eliciting anti-allergic effect of EGCG3''Me through the cell surficial protein, 67-kDa laminin receptor (67LR). Furthermore, oral administration of the highly absorbent hesperidin, α-glucosyl hesperidin, also enhanced the inhibitory potency of EGCG3''Me-rich 'Benifuuki' green tea (Camellia sinensis L.) on passive cutaneous anaphylaxis (PCA) reaction evoked by IgE/antigen in BALB/c mice. These observations indicate that hesperetin amplifies the ability of EGCG3''Me to inhibit the IgE/antigen-mediated degranulation through activating ASM signaling.


Asunto(s)
Antialérgicos , Catequina , Flavanonas , Hesperidina , Ratas , Ratones , Animales , Antialérgicos/farmacología , Inmunoglobulina E , Anafilaxis Cutánea Pasiva
9.
Curr Issues Mol Biol ; 44(12): 6247-6256, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36547087

RESUMEN

Epigallocatechin 3-O-gallate (EGCG) is a predominant component in green tea with various health benefits. The 67 kDa laminin receptor (67LR) is a nonintegrin cell surface receptor that is overexpressed in various types of cancer; 67LR was identified a cell surface EGCG target that plays a pivotal role in tumor growth, metastasis, and resistance to chemotherapy. However, the plasma concentration of EGCG is limited, and its molecular mechanisms remain unelucidated in colon cancer. In this study, we found that the phosphodiesterase 5 (PDE5) inhibitor, vardenafil (VDN), potentiates EGCG-induced apoptotic cell death in colon cancer cells. The combination of EGCG and VDN induced apoptosis via activation of the endothelial nitric oxide synthase/cyclic guanosine monophosphate/protein kinase Cδ signaling pathway. In conclusion, the PDE5 inhibitor, VDN, may reduce the intracellular PDE5 enzyme activity that potentiates EGCG-induced apoptotic cell death in Caco-2 cells. These results suggest that PDE5 inhibitors can be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death. Therefore, EGCG may be employed as a therapeutic candidate for colon cancer.

10.
Plants (Basel) ; 11(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36432823

RESUMEN

Symplocos sumuntia Buch.-Ham. ex D. Don (S. sumuntia) is a traditional medicinal herb used in Asia to treat various pathologies, including cough, stomachache, tonsillitis, hypertension, and hyperlipidemia. Although the anti-inflammatory activity of S. sumuntia has been reported, little is known about its anti-inflammatory activity and molecular mechanisms in microglial cells. Therefore, we investigated the inhibitory effects of S. sumuntia methanol extract (SSME) on the inflammatory responses in lipopolysaccharide (LPS)-treated BV2 cells. The SSME significantly inhibited the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as the production of nitric oxide (NO), a proinflammatory mediator. The production of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1ß, was suppressed by the SSME in the LPS-induced BV2 cells. The mechanism underlying the anti-inflammatory effects of SSME involves the suppression of the LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) such as JNK. Moreover, we showed that the LPS-stimulated nuclear translocation of the nuclear factor-κB (NF-κB)/p65 protein, followed by IκB degradation, was decreased by the SSME treatment. Collectively, these results showed that the SSME induced anti-inflammatory effects via the suppression of the MAPK signaling pathways, accompanied by changes in the NF-κB translocation into the nucleus. Therefore, SSME may be employed as a potential therapeutic candidate for various inflammatory diseases.

11.
J Cancer ; 13(8): 2570-2583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711835

RESUMEN

Aims: Ribosomal protein L17 (RPL17), a 60S subunit component, is up-regulated in colorectal cancer (CRC). However, its oncogenic role in CRC progression remains unexplored. Thus, we aimed to investigate the effect of RPL17 targeting on CRC in vitro and in vivo and whether RPL17 gained an extra-ribosomal function during CRC development. Methods: RPL17-specific siRNAs complexed with cationic lipids were transfected to CRC cells to silence target gene expression and then real-time RT-PCR and western blotting were applied to observe the change of expression or activity of genes or proteins of interest. Cell proliferation assay, clonogenic assay and cell cycle analysis were used to determine the in vitro effects of RPL17siRNAs on CRC cell growth, and a subcutaneous xenograft assay was applied to test the effect of RPL17siRNAs on in vivo tumor growth. RNA sequencing and western blotting were used to investigate the underlying mechanisms. Sphere-forming assay, invasion assay and migration assay were used to evaluate the effects of RPL17siRNAs on CRC stemness. Results: siRNA-mediated inhibition of RPL17 expression suppressed CRC cell growth and long-term colony formation by inducing apoptotic cell death. Similarly, targeting RPL17 effectively suppressed tumor formation in a mouse xenograft model. RNA sequencing of RPL17-silenced CRC cells revealed the same directional regulation of 159 (93 down- and 66 up-regulated) genes. Notably, NIMA-related kinase 2 (NEK2), which functionally cooperates with extracellular-regulated protein kinase (ERK) and plays a pivotal role in mitotic progression and stemness maintenance, was down-regulated. RPL17 silencing reduced NEK2, ß-catenin, and p-ERK protein levels. These molecular alterations reflected the reduction in sphere-forming capacity, expression of stem cell marker genes, migration, and invasion. Reversely, RPL17 overexpression increased the ability of long-term colony formation, migration, and invasion. Conclusion: Our findings indicate that RPL17 promotes CRC proliferation and stemness via the ERK and NEK2/ß-catenin signaling axis, and targeting RPL17 could be the next molecular strategy for both primary CRC treatment and prevention of secondary tumor formation.

12.
Materials (Basel) ; 15(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35454483

RESUMEN

Concrete-filled steel tubes (CFSTs) are widely used in construction. To achieve composite action and take full advantage of the two materials, strain continuity at the steel-concrete interface is essential. When the concrete core and steel tube are not loaded simultaneously in regions such as beam or brace connections to the steel tubes of a CFST column, the steel-concrete bond plays a crucial role in load transfer. This study uses a validated finite-element model to investigate the bond-slip behavior between the steel tube and concrete in square CFST mega columns through a push-out analysis of eleven 1.2- × 1.2-m mega columns. The bond-slip behavior of CFST mega columns with and without mechanical connectors, including shear studs, rib plates, and connecting plates, is studied. The finite-element results indicate that the mechanical connectors substantially increased the maximum bond stress. Among the analyzed CFST mega columns, those with closely spaced shear studs and rib plate connectors with circular holes exhibited the highest bond stress, followed by plate connectors and widely spaced shear stud connectors. In the case of shear stud connectors, the stud diameter and spacing influenced the bond behavior more than the stud length. As the stud spacing decreased, the failure mode shifted from studs shearing off to outward buckling of the steel tube.

13.
Polymers (Basel) ; 14(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35406306

RESUMEN

In this era of the fourth industrial revolution, the integration of big data and 3D printing technology with the construction industry has maximized productivity. Currently, there is an active effort to research the optimal cladding structure through 3D printing technology to reduce production costs. This paper proposes a new type of 3D print curtain wall, using a high-strength ABS-M30 polymer panel, which is stronger than the standard acrylonitrile butadiene styrene (ABS) polymer, as an internally reinforced structure. This structure is fabricated via fused deposition modeling, a 3D printing method, to reduce the weight of the general cement panel. In addition, the shape of the polymer board was designed; three shapes were considered-O, W, and X types-which aided in further reducing the weight of the cladding. After comparing the center deformation of the structure through a lateral load test and finite element method analysis, the optimal model was selected. The measured data of the two methods at a design wind speed of 100% showed a difference of approximately 10%; however, at 150% of the design wind speed, the difference between the two sets of data increased to 27%.

14.
Sensors (Basel) ; 22(7)2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35408376

RESUMEN

The development of unmanned aerial vehicles (UAVs) is expected to become one of the most commercialized research areas in the world over the next decade. Globally, unmanned aircraft have been increasingly used for safety surveillance in the construction industry and civil engineering fields. This paper presents an aerial image-based approach using UAVs to inspect cracks and deformations in buildings. A state-of-the-art safety evaluation method termed SMART SKY EYE (Smart building safety assessment system using UAV) is introduced; this system utilizes an unmanned airplane equipped with a thermal camera and programmed with various surveying efficiency improvement methods, such as thermography, machine-learning algorithms, and 3D point cloud modeling. Using this method, crack maps, crack depths, and the deformations of structures can be obtained. Error rates are compared between the proposed and conventional methods.


Asunto(s)
Industria de la Construcción , Dispositivos Aéreos No Tripulados , Aeronaves , Algoritmos , Aprendizaje Automático
15.
BMB Rep ; 54(9): 476-481, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34488925

RESUMEN

Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in ß-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting. [BMB Reports 2021; 54(9): 476-481].


Asunto(s)
Hígado/metabolismo , Perilipina-5/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Triglicéridos/metabolismo , Animales , Sitios de Unión , Células Hep G2 , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Masculino , Ratones , Ratones Noqueados , Perilipina-5/química , Perilipina-5/genética , Regiones Promotoras Genéticas , Unión Proteica , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética
16.
J Nat Prod ; 84(6): 1823-1830, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34106718

RESUMEN

(-)-Epigallocatechin-3-O-(3-O-methyl) gallate (1, EGCG3″Me), an antiallergic O-methylated catechin, is present in high quantities in the green tea cultivar "Benifuuki" (Camellia sinensis L.). Previous studies have shown that EGCG3″Me inhibited basophil degranulation mediated through the cell-surface 67-kDa laminin receptor (67LR), but the mechanisms are not fully elucidated. This study aimed to investigate the mechanisms underlying the inhibitory effect of EGCG3″Me on IgE/antigen (Ag)-mediated degranulation and the combined effect of EGCG3″Me with eriodictyol (2), a bioactive flavanone. EGCG3″Me inhibited ß-hexosaminidase release from the rat basophilic/mast cell line RBL-2H3 stimulated by IgE/Ag and induced acid sphingomyelinase (ASM) activity. This induction was inhibited by anti-67LR antibody treatment. The ASM-specific inhibitor desipramine inhibited EGCG3″Me-induced suppression of degranulation. The soluble guanylate cyclase (sGC) inhibitor NS2028 weakened the potency of EGCG3″Me, and the sGC activator BAY41-2272 suppressed degranulation. The ability of EGCG3″Me to induce ASM activity and inhibit degranulation was amplified by eriodictyol. Furthermore, oral administration of the lemon-peel-derived eriodyctiol-7-O-glucoside (3) potentiated the suppressive effect of EGCG3″Me-rich "Benifuuki" green tea on the IgE/Ag-induced passive cutaneous anaphylaxis (PCA) reaction in BALB/c mice. These results suggest that EGCG3″Me inhibits IgE/Ag-mediated degranulation by inducing the 67LR/sGC/ASM signaling pathway, and eriodictyol amplifies this signaling.


Asunto(s)
Antialérgicos/farmacología , Catequina/farmacología , Flavanonas/farmacología , Receptores de Laminina/metabolismo , Animales , Camellia sinensis/química , Línea Celular , Femenino , Mastocitos/efectos de los fármacos , Ratones Endogámicos BALB C , Ratas , Transducción de Señal/efectos de los fármacos ,
17.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801424

RESUMEN

Big data analysis has revealed the upregulation of cell division cycle associated 8 (CDCA8) in human hepatocellular carcinoma (HCC) and its poorer survival outcome. However, the functions of CDCA8 during HCC development remain unknown. Here, we demonstrate in vitro that CDCA8 silencing inhibits HCC cell growth and long-term colony formation and migration through the accumulation of the G2/M phase cell population. Conversely, CDCA8 overexpression increases the ability to undergo long-term colony formation and migration. RNA sequencing and bioinformatic analysis revealed that CDCA8 knockdown led to the same directional regulation in 50 genes (25 down- and 25 upregulated). It was affirmed based on protein levels that CDCA8 silencing downregulates the levels of cyclin B1 and p-cdc2 and explains how it could induce G2/M arrest. The same condition increased the protein levels of tumor-suppressive ATF3 and GADD34 and inactivated AKT/ß-catenin signaling, which plays an important role in cell growth and stemness, reflecting a reduction in sphere-forming capacity. Importantly, it was demonstrated that the extent of CDCA8 expression is much greater in CD133+ cancer stem cells than in CD133- cancer cells, and that CDCA8 knockdown decreases levels of CD133, p-Akt and ß-catenin and increases levels of ATF3 and GADD34 in the CD133+ cancer stem cell (CSC) population. These molecular changes led to the inhibition of cell growth and sphere formation in the CD133+ cell population. Targeting CDCA8 also effectively suppressed tumor growth in a murine xenograft model, showing consistent molecular alterations in tumors injected with CDCA8siRNA. Taken together, these findings indicate that silencing CDCA8 suppresses HCC growth and stemness via restoring the ATF3 tumor suppressor and inactivating oncogenic AKT/ß-catenin signaling, and that targeting CDCA8 may be the next molecular strategy for both primary HCC treatment and the prevention of metastasis or recurrence.

18.
Materials (Basel) ; 14(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467035

RESUMEN

A new type of composite voided slab, the TUBEDECK (TD), which utilizes the structural function of profiled steel decks, has recently been proposed. Previous studies have confirmed that the flexural strength of TD slabs can be calculated based on the full composite contribution of the steel deck, but for long-span flexural members, the deflection serviceability requirement is often dominant. Herein, we derived a novel deflection prediction approach using the results of flexural tests on slab specimens, focusing on TD slabs. First, deflection prediction based on modifications of the current code was proposed. Results revealed that TD slabs exhibited smaller long-term deflections and at least 10% longer maximum span lengths than solid slabs, indicating their greater efficiency. Second, a novel rational method was derived for predicting deflections without computing the effective moment of inertia. The ultimate deflections predicted by the proposed method correlated closely with the deflection under maximum bending moments. To calculate immediate deflections, variation functions for the concrete strain at the extreme compression fiber and neutral axis depth were assumed with predictions in good agreement with experiments. The proposed procedure has important implications in highlighting a new perspective on the deflection prediction of reinforced concrete and composite flexural members.

19.
Biomedicines ; 10(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35052752

RESUMEN

Type 2 diabetes mellitus (T2DM) is a major global health issue. The development of T2DM is gradual and preceded by the pre-diabetes mellitus (pre-DM) stage, which often remains undiagnosed. This study aimed to identify novel pre-DM biomarkers in a high-fat diet (HFD)-induced pre-DM mouse model. Male C57BL/6J mice were fed either a chow diet or HFD for 12 weeks. Serum and liver samples were isolated in a time-dependent manner. Semi-quantitative assessment of secretory cytokines was performed by cytokine array analysis, and 13 cytokines were selected for further analysis based on the changes in expression levels in the pre-DM and T2DM stages. HFD-fed mice gained body weight and exhibited high serum lipid, liver enzyme, glucose, and insulin levels during the progression of pre-DM to T2DM. The mRNA expression of inflammatory and lipogenic genes was elevated in HFD-fed mice The mRNA expression of Fc receptor, IgG, low affinity Iib, lectin, galactose binding, soluble 1, vascular cell adhesion molecule 1, insulin-like growth factor binding protein 5, and growth arrest specific 6 was elevated in the pre-DM, which was confirmed by measuring protein levels. Our study identified novel pre-DM biomarkers that may help to delay or prevent the progression of T2DM.

20.
Materials (Basel) ; 13(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297394

RESUMEN

Owing to the development of new materials that enhance structural members in the construction field, steel-polymer composite floors have been developed and applied to steel structures. Similar to a sandwich system, steel-polymer composite floors consist of polymers between two steel plates. The structural performance of full-scale composite floors at ambient conditions has been investigated. Additionally, experiments were conducted on analytical models to predict both thermal behavior under fire, including fire resistance based on a small-scale furnace. To evaluate the fire resistance of full-scale steel-polymer composite floors, the thermal behavior and temperature distribution of composite floors should be investigated. Therefore, the temperature distributions of the full-scale composite floors were estimated using the verified analytical model in this study. Furthermore, to determine the fire design equation of steel-polymer composite floors in the thermal field, the correlations between variables were investigated, such as the thickness of top and bottom steel plates and polymers, as well as the fire resistance in the thermal field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA