Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117083, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968793

RESUMEN

Cancer stem cells (CSCs) can self-renew and differentiate, contributing to tumor heterogeneity, metastasis, and recurrence. Their resistance to therapies, including immunotherapy, underscores the importance of targeting them for complete remission and relapse prevention. Olfactomedin 4 (OLFM4), a marker associated with various cancers such as colorectal cancer, is expressed on CSCs promoting immune evasion and tumorigenesis. However, its potential as a target for CSC-specific immunotherapy remains underexplored. The primary aim of this study is to evaluate the effectiveness of targeting OLFM4 with dendritic cell (DC)-based vaccines in inhibiting tumor growth and metastasis. To improve antigen delivery and immune response, OLFM4 was conjugated with a protein-transduction domain (PTD) from the antennapedia of Drosophila called penetratin, creating a fusion protein (P-OLFM4). The efficacy of DCs pulsed with P-OLFM4 (DCs [P-OLFM4]) was compared to DCs pulsed with OLFM4 (DCs [OLFM4]) and PBS (DCs [PBS]). DCs [P-OLFM4] inhibited tumor growth by 91.2 % and significantly reduced lung metastasis of OLFM4+ melanoma cells by 97 %, compared to the DCs [PBS]. DCs [OLFM4] also demonstrated a reduction in lung metastasis by 59.7 % compared to DCs [PBS]. Immunization with DCs [P-OLFM4] enhanced OLFM4-specific T-cell proliferation, interferon-γ production, and cytotoxic T cell activity in mice. The results indicate that OLFM4 is a viable target for CSC-focused immunotherapy. DC [P-OLFM4] vaccines can elicit robust immune responses, significantly inhibiting tumor growth and metastasis. This strategy holds promise for developing more effective cancer treatments that specifically target CSCs, potentially leading to better patient outcomes by reducing the likelihood of tumor relapse and metastasis.

2.
Front Immunol ; 12: 697162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484196

RESUMEN

Acute lung injury (ALI) results in acute respiratory disease that causes fatal respiratory diseases; however, little is known about the incidence of influenza infection in ALI. Using a ALI-mouse model, we investigated the pro-inflammatory cytokine response to ALI and influenza infection. Mice treated with bleomycin (BLM), which induces ALI, were more resistant to influenza virus infection and exhibited higher levels of type I interferon (IFN-I) transcription during the early infection period than that in PBS-treated control mice. BLM-treated mice also exhibited a lower viral burden, reduced pro-inflammatory cytokine production, and neutrophil levels. In contrast, BLM-treated IFN-I receptor 1 (IFNAR1)-knockout mice failed to show this attenuated phenotype, indicating that IFN-I is key to the antiviral response in ALI-induced mice. The STING/TBK1/IRF3 pathway was found to be involved in IFN-I production and the establishment of an antiviral environment in the lung. The depletion of plasmacytoid dendritic cells (pDCs) reduced the effect of BLM treatment against influenza virus infection, suggesting that pDCs are the major source of IFN-I and are crucial for defense against viral infection in BLM-induced lung injury. Overall, this study showed that BLM-mediated ALI in mice induced the release of double-stranded DNA, which in turn potentiated IFN-I-dependent pulmonary viral resistance by activating the STING/TBK1/IRF3 pathway in association with pDCs.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Interferón Tipo I/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Lesión Pulmonar Aguda/inducido químicamente , Animales , Antivirales/farmacología , Bleomicina/farmacología , Bleomicina/toxicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Virus de la Influenza A , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Receptor de Interferón alfa y beta/deficiencia , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Carga Viral/inmunología
3.
Sci Rep ; 9(1): 15654, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666593

RESUMEN

Urinary tract infection (UTI) is one of the most common bacterial infections in infants less than age 1 year. UTIs frequently recur and result in long-term effects include sepsis and renal scarring. Uropathogenic Escherichia coli (UPEC), the most prevalent organism found in UTIs, can cause host inflammation via various virulence factors including hemolysin and cytotoxic necrotizing factors by inducing inflammatory cytokines such as interleukin (IL)-1ß. However, the ability of each UPEC organism to induce IL-1ß production may differ by strain. Furthermore, the correlation between differential IL-1ß induction and its relevance in pathology has not been well studied. In this study, we isolated UPEC from children under age 24 months and infected bone-marrow derived macrophages with the isolates to investigate secretion of IL-1ß. We found that children with higher concentrations of C-reactive protein (CRP) were more likely to harbor phylotype B2 UPEC strains that induced more IL-1ß production than phylotype D. We also observed a significant correlation between serum CRP level and in vitro IL-1ß induction by phylotype B2 UPEC bacteria. Our results highlight the diversity of UPEC in terms of IL-1ß induction capacity in macrophages and suggest a potential pathogenic role in UTIs by inducing inflammation in infants.


Asunto(s)
Proteína C-Reactiva/metabolismo , Interleucina-1beta/metabolismo , Escherichia coli Uropatógena/fisiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Filogenia , República de Corea , Infecciones Urinarias/sangre , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/genética , Escherichia coli Uropatógena/patogenicidad , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA