Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 43(9): 1740-1769, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565949

RESUMEN

The Hippo pathway effectors Yes-associated protein 1 (YAP) and its homolog TAZ are transcriptional coactivators that control gene expression by binding to TEA domain (TEAD) family transcription factors. The YAP/TAZ-TEAD complex is a key regulator of cancer-specific transcriptional programs, which promote tumor progression in diverse types of cancer, including breast cancer. Despite intensive efforts, the YAP/TAZ-TEAD complex in cancer has remained largely undruggable due to an incomplete mechanistic understanding. Here, we report that nuclear phosphoinositides function as cofactors that mediate the binding of YAP/TAZ to TEADs. The enzymatic products of phosphoinositide kinases PIPKIα and IPMK, including phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (P(I3,4,5)P3), bridge the binding of YAP/TAZ to TEAD. Inhibiting these kinases or the association of YAP/TAZ with PI(4,5)P2 and PI(3,4,5)P3 attenuates YAP/TAZ interaction with the TEADs, the expression of YAP/TAZ target genes, and breast cancer cell motility. Although we could not conclusively exclude the possibility that other enzymatic products of IPMK such as inositol phosphates play a role in the mechanism, our results point to a previously unrecognized role of nuclear phosphoinositide signaling in control of YAP/TAZ activity and implicate this pathway as a potential therapeutic target in YAP/TAZ-driven breast cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias de la Mama , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Señalizadoras YAP/metabolismo , Proteínas Señalizadoras YAP/genética , Femenino , Transactivadores/metabolismo , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Línea Celular Tumoral , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositoles/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Núcleo Celular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Gastroenterology ; 164(7): 1293-1309, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36898552

RESUMEN

BACKGROUND & AIMS: Intrahepatic cholangiocarcinomas (iCCs) are characterized by their rarity, difficult diagnosis, and overall poor prognosis. The iCC molecular classification for developing precision medicine strategies was investigated. METHODS: Comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic analyses were performed on treatment-naïve tumor samples from 102 patients with iCC who underwent surgical resection with curative intent. An organoid model was constructed for testing therapeutic potential. RESULTS: Three clinically supported subtypes (stem-like, poorly immunogenic, and metabolism) were identified. NCT-501 (aldehyde dehydrogenase 1 family member A1 [ALDH1A1] inhibitor) exhibited synergism with nanoparticle albumin-bound-paclitaxel in the organoid model for the stem-like subtype. The oncometabolite dysregulations were associated with different clinical outcomes in the stem-like and metabolism subtypes. The poorly immunogenic subtype harbors the non-T-cell tumor infiltration. Integrated multiomics analysis not only reproduced the 3 subtypes but also showed heterogeneity in iCC. CONCLUSIONS: This large-scale proteogenomic analysis provides information beyond that obtained with genomic analysis, allowing the functional impact of genomic alterations to be discerned. These findings may assist in the stratification of patients with iCC and in developing rational therapeutic strategies.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Proteogenómica , Humanos , Proteómica , Pronóstico , Colangiocarcinoma/genética , Colangiocarcinoma/cirugía , Colangiocarcinoma/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/patología
3.
Comput Struct Biotechnol J ; 19: 4759-4769, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504668

RESUMEN

Researchers have gained new therapeutic insights using multi-omics platform approaches to study DNA, RNA, and proteins of comprehensively characterized human cancer cell lines. To improve our understanding of the molecular features associated with oncogenic modulation in cancer, we proposed a proteogenomic database for human cancer cell lines, called Protein-gene Expression Nexus (PEN). We have expanded the characterization of cancer cell lines to include genetic, mRNA, and protein data of 145 cancer cell lines from various public studies. PEN contains proteomic and phosphoproteomic data on 4,129,728 peptides, 13,862 proteins, 7,138 phosphorylation site-associated genomic variations, 117 studies, and 12 cancer. We analyzed functional characterizations along with the integrated datasets, such as cis/trans association for copy number alteration (CNA), single amino acid variation for coding genes, post-translation modification site variation for Single Amino Acid Variation, and novel peptide expression for noncoding regions and fusion genes. PEN provides a user-friendly interface for searching, browsing, and downloading data and also supports the visualization of genome-wide association between CNA and expression, novel peptide landscape, mRNA-protein abundance, and functional annotation. Together, this dataset and PEN data portal provide a resource to accelerate cancer research using model cancer cell lines. PEN is freely accessible at http://combio.snu.ac.kr/pen.

4.
Biotechnol Bioeng ; 117(12): 3924-3937, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32816306

RESUMEN

Retroviral vectors show long-term gene expression in gene therapy through the integration of transgenes into the human cell genome. Murine leukemia virus (MLV), a well-studied gammaretrovirus, has been often used as a representative retroviral vector. However, frequent integrations of MLV-based vectors into transcriptional start sites (TSSs) could lead to the activation of oncogenes by enhancer effects of the genetic components within the vectors. Therefore, the MLV integration preference for TSSs limits its wider use in clinical applications. To reduce the integration preference of MLV-based vectors, we attempted to perturb the structure of the viral integrase that plays a key role in determining integration sites. For this goal, we inserted histones and leucine zippers, having DNA-binding property, into internal sites of MLV integrase. This integrase engineering yielded multiple mutant vectors that showed significantly different integration patterns compared with that of wild-type vector. Some mutant vectors did not prefer the key regulatory genomic domains of human cells, TSSs. Moreover, a couple of engineered vectors did not integrate into the genomic sites near the TSSs of oncogenes. Overall, this study suggests that structural perturbation of integrase is a simple way to develop safer MLV-based retroviral vectors for use in clinical applications.


Asunto(s)
Gammaretrovirus , Vectores Genéticos , Integrasas , Proteínas Virales , Integración Viral , Gammaretrovirus/enzimología , Gammaretrovirus/genética , Células HEK293 , Células HeLa , Humanos , Integrasas/genética , Integrasas/metabolismo , Leucina Zippers , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
Molecules ; 25(3)2020 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-31991809

RESUMEN

SH-1242, a novel inhibitor of heat shock protein 90 (HSP90), is a synthetic analog of deguelin: It was previously reported that the treatment of SH-1242 led to a strong suppression of hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retinas by inhibiting the hypoxia-induced upregulation of expression in hypoxia-inducible factor 1α (HIF-1ɑ) and vascular endothelial growth factor (VEGF). In this study, an analytical method for the quantification of SH-1242 in biological samples from rats and mice was developed/validated for application in pharmacokinetic studies. SH-1242 and deguelin, an internal standard of the assay, in plasma samples from the rodents were extracted with methanol containing 0.1% formic acid and analyzed at m/z transition values of 368.9→151.0 and 395.0→213.0, respectively. The method was validated in terms of accuracy, precision, dilution, matrix effects, recovery, and stability and shown to comply with validation guidelines when it was used in the concentration ranges of 1-1000 ng/mL for rat plasma and of 2-1000 ng/mL for mouse plasma. SH-1242 levels in plasma samples were readily determined using the developed method for up to 480 min after the intravenous administration of 0.1 mg/kg SH-1242 to rats and for up to 120 min to mice. These findings suggested that the current method was practical and reliable for pharmacokinetic studies on SH-1242 in preclinical animal species.


Asunto(s)
Benzopiranos/farmacocinética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Animales , Benzopiranos/química , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Líquida de Alta Presión/normas , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Monitoreo de Drogas , Estabilidad de Medicamentos , Ratones , Estructura Molecular , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas
6.
J Comput Biol ; 24(9): 917-922, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28632399

RESUMEN

Genome annotation is a primary step in genomic research. To establish a light and portable prokaryotic genome annotation pipeline for use in individual laboratories, we developed a Shiny app package designated as "P-CAPS" (Prokaryotic Contig Annotation Pipeline Server). The package is composed of R and Python scripts that integrate publicly available annotation programs into a server application. P-CAPS is not only a browser-based interactive application but also a distributable Shiny app package that can be installed on any personal computer. The final annotation is provided in various standard formats and is summarized in an R markdown document. Annotation can be visualized and examined with a public genome browser. A benchmark test showed that the annotation quality and completeness of P-CAPS were reliable and compatible with those of currently available public pipelines.


Asunto(s)
Mapeo Contig/métodos , Genoma Arqueal , Genoma Bacteriano , Anotación de Secuencia Molecular/métodos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA