Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1181064, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929025

RESUMEN

Aim/Introduction: The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods: Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results: Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion: Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.


Asunto(s)
Liraglutida , Síndrome Metabólico , Metformina , Animales , Femenino , Masculino , Ratas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/etiología , Metformina/uso terapéutico , Ratas Sprague-Dawley , Sacarosa/efectos adversos , Factores Sexuales
2.
Life (Basel) ; 12(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35743826

RESUMEN

BACKGROUND: In obesity, the adipose tissue becomes a very significant endocrine organ producing different factors called adipokines, such as leptin, adiponectin and kisspeptin; however, no data are available about their actions on uterine contraction in obese pregnant rats. Our aim was to study the impact of obesity on pregnant uterine contraction in a rat model. METHODS: Obesity was induced by the consumption of a high fat high sucrose diet (HFHSD) for 9 weeks, including pregnancy. Glucose tolerance, sex hormone, cytokine and adipokine levels were measured. Uterine contractions and cervical resistance, as well as their responses to adipokines, were tested along with the expressions of their uterine receptors. RESULTS: HFHSD increased body weight, and altered glucose tolerance and fat composition. The uterine leptin and kisspeptin pathway affect increased. The levels of proinflammatory cytokines were reduced, while the plasma level of progesterone was increased, resulting in weaker uterine contractions, and improving the uterine relaxing effects of adipokines. HFHSD reduced cervical resistance, but the core effect of adipokines is difficult to determine. CONCLUSIONS: Obesity in pregnant rats reduces uterine contractility and cytokine-induced inflammatory processes, and therefore obese pregnant rat methods are partially applicable for modelling human processes.

3.
Neurochem Res ; 46(6): 1350-1358, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33616807

RESUMEN

Recently neuronal insulin resistance was suggested playing a role in Alzheimer's disease. Streptozotocin (STZ) is commonly used to induce impairment in insulin metabolism. In our previous work on undifferentiated SH-SY5Y cells the compound exerted cytotoxicity without altering insulin sensitivity. Nevertheless, differentiation of the cells to a more mature neuron-like phenotype may considerably affect the significance of insulin signaling and its sensitivity to STZ. We aimed at studying the influence of STZ treatment on insulin signaling in SH-SY5Y cells differentiated by retinoic acid (RA). Cytotoxicity of STZ or low serum (LS) condition and protective effect of insulin were compared in RA differentiated SH-SY5Y cells. The effect of insulin and an incretin analogue, exendin-4 on insulin signaling was also examined by assessing glycogen synthase kinase-3 (GSK-3) phosphorylation. STZ was found less cytotoxic in the differentiated cells compared to our previous results in undifferentiated SH-SY5Y cells. The cytoprotective concentration of insulin was similar in the STZ and LS groups. However, the right-shifted concentration-response curve of insulin induced GSK-3 phosphorylation in STZ-treated differentiated cells is suggestive of the development of insulin resistance that was further confirmed by the insulin potentiating effect of exendin-4. Differentiation reduced the sensitivity of SH-SY5Y cells for the non-specific cytotoxicity of STZ and enhanced the relative significance of development of insulin resistance. The differentiated cells thus serve as a better model for studying the role of insulin signaling in neuronal survival. However, direct cytotoxicity of STZ also contributes to the cell death.


Asunto(s)
Diferenciación Celular/fisiología , Resistencia a la Insulina/fisiología , Insulina/farmacología , Estreptozocina/toxicidad , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Exenatida/farmacología , Glucógeno Sintasa Quinasa 3/química , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Transducción de Señal/efectos de los fármacos , Tretinoina/farmacología
4.
Biochim Biophys Acta Proteins Proteom ; 1868(10): 140473, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574765

RESUMEN

Decreased extracellular level of d-Serine (D-Ser), a co-agonist of the N-methyl-d-aspartate (NMDA) receptors was connected to receptor hypofunction in the brain and the related deficit of cognitive functions. Extracellular D-Ser concentration is modulated by ASCT neutral amino acid transporters. L-Theanine (L-Tea), a neutral amino acid component of green tea was reported to improve cognitive functions. We thus intended to investigate the possible inhibitory effect of L-Tea on the D-Ser uptake of SH-SY5Y neuroblastoma cells, which was previously found as a good model of D-Ser transport into astrocytes. Cells were incubated with D-Ser and various concentrations of L-Tea or the reference compound S-ketamine (S-Ket). The effect on the uptake was assessed by measuring the intracellular D-Ser concentration using a capillary electrophoresis - laser induced fluorescence detection method. L-Tea competitively inhibited D-Ser uptake into SH-SY5Y cells with an IC50 value of 9.68 mM. Having previously described as an inhibitor of ASCT-2 transporter, S-Ket was intended to be used as a positive control. However, no acute inhibition of D-Ser transport by S-Ket was observed. Its long-term effect on the transport was also examined. No significant difference in D-Ser uptake in control and S-Ket-treated cells was found after 72 h treatment, although the intracellular D-Ser content of the 50 µM S-Ket pre-treated cells was significantly higher. L-Tea was found to be a weak competitive inhibitor of the ASCT transporters, while S-Ket did not directly affect D-Ser uptake or modify the uptake kinetics after a long-term incubation period.


Asunto(s)
Glutamatos/farmacología , Ketamina/farmacología , Serina/metabolismo , Transporte Biológico/efectos de los fármacos , Línea Celular Tumoral , Humanos
5.
J Pharm Biomed Anal ; 187: 113360, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32447235

RESUMEN

d-Serine is an important co-agonist of the N-methyl-d-aspartate (NMDA) receptors in the brain and its altered activity was identified in various pathological conditions. Modification of the extracellular d-serine level is suggested to be able to modulate the receptor function. Its transporters may thus serve as potential drug targets. The aim of this work was to find an easily available human cell line model appropriate for screening molecules affecting d-serine transporters. Characteristics of d-serine transport into SH-SY5Y human neuroblastoma cell line were studied and compared to those in cultured primary astrocytes. Uptake was followed by measuring intracellular d-serine concentration by capillary electrophoresis with laser induced fluorescence detection method. We found that SH-SY5Y cells express functional ASCT-1 and ASCT-2 neutral amino acid transporters and show similar d-serine uptake kinetics to cultured astrocytes. Neutral amino acids inhibited d-serine uptake similarly in both cell types. Complete inhibition was achieved by l-alanine and l-threonine alike, while the two-step inhibition curve of trans-hydroxy-l-proline, a selective inhibitor of ASCT-1 supported the presence of functioning ASCT-1 and ASCT-2 transporters. Its higher affinity step corresponding to inhibition of ASCT-1 was responsible for about 30% of the total d-serine uptake. Based on our results human SH-SY5Y cell line shows similar uptake characteristics to primary astrocytes and thus can serve as a suitable model system for testing of compounds for influencing d-serine uptake into astrocytes.


Asunto(s)
Astrocitos/metabolismo , Neuroblastoma/metabolismo , Serina/metabolismo , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Transporte Biológico/fisiología , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Electroforesis Capilar , Humanos , Antígenos de Histocompatibilidad Menor/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas
6.
J Neural Transm (Vienna) ; 127(1): 71-80, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31858268

RESUMEN

Recently, it is suggested that brain insulin resistance may contribute to the development of Alzheimer's disease; therefore, there is a high interest in its investigation. Streptozotocin (STZ) is often used to induce dysregulation of glucose and insulin metabolism in animal and cell culture models. Alteration in insulin sensitivity however, has not yet been assessed in neuronal cells after STZ treatment. We aimed at studying the concentration dependence of the protective effect of insulin on STZ-induced damage using SH-SY5Y cell line. Cells were treated with STZ and cell viability was assessed by resazurin reduction and lactate dehydrogenase release assays. Low serum (LS) medium was used as control damage. The effect of various concentrations (30, 100, 300, 1000 nM) of insulin was studied on cell viability and glycogen synthase kinase-3 (GSK-3) phosphorylation, an indicator of insulin signaling. STZ induced dose- and time-dependent cytotoxicity, its 1 mM concentration exerted a low, gradually developing damage. The cytoprotective effect of insulin was demonstrated in both STZ and LS groups. Its maximal effect was lower in the STZ-treated cells; however, its effective concentration remained largely unaltered. Insulin-induced GSK-3 phosphorylation was similar in the STZ- and LS-treated cells suggesting unchanged insulin signaling. Our present results indicate that STZ does not induce significant impairment in insulin sensitivity in SH-SY5Y cells, thus in this cell line it is not a good tool for studying the role of insulin resistance in neurodegeneration and to examine protective agents acting by improving insulin signaling.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Resistencia a la Insulina , Insulina/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Estreptozocina/farmacología , Línea Celular Tumoral , Humanos
7.
Medicina (Kaunas) ; 55(5)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108997

RESUMEN

Background and Objectives: The use of the dopamine-partial agonist subclass (also termed dopamine stabilizers) of atypical antipsychotics for the treatment of negative schizophrenia symptoms and some mood disorders has increased recently. Similar to other second-generation antipsychotics (SGAs), aripiprazole (ARI) and cariprazine (CAR) also influence food intake, but the peripheral effects of these drugs on adipose-tissue homeostasis, including adipokine secretion as well as lipo- and adipogenesis, are not fully elucidated. In this study, we explored the adipocyte-related mechanisms induced by second-generation antipsychotics (SGAs), leading to changes in peripheral signals involved in energy homeostasis. Materials and Methods: CAR, a new SGA, was compared with ARI and olanzapine (OLA), using cell cultures to study adipogenesis, and the expression levels of peroxisome proliferator-activated receptor-γ (PPAR-γ) was measured in adipocytes derived from mouse fibroblasts, by western blotting on days 7, 14, and 21 postinduction. The triglyceride (TG) content of the cells was also evaluated on day 15 using Oil Red O staining, and the adiponectin (AN) content in the cell culture supernatants was quantified on days 7 and 15 by enzyme-linked immunosorbent assay. Cells were treated with two concentrations of ARI (0.5 and 20 µg/mL), OLA (1 and 20 µg/mL), and CAR (0.1 and 2 µg/mL). Results: Both concentrations of ARI and OLA, as well as the lower concentration of CAR, significantly increased the TG contents. The AN levels in the supernatants were significantly increased by the higher concentration of ARI on days 7 and 15 (p < 0.05). Although PPAR-γ levels were not significantly affected by ARI and OLA, the lower concentration of CAR induced a significant time-dependent decrease in PPAR-γ expression (p < 0.05). Conclusions: The in vitro adipogenesis considered from TG accumulation, AN secretion, and PPAR-γ expression was differently influenced by ARI, CAR, and OLA. Understanding the adipocyte-related mechanisms of antipsychotics could contribute to understanding their weight-influencing effect.


Asunto(s)
Aripiprazol/uso terapéutico , Fibroblastos/efectos de los fármacos , Olanzapina/uso terapéutico , Piperazinas/uso terapéutico , Adiponectina/análisis , Adiponectina/sangre , Animales , Aripiprazol/administración & dosificación , Aripiprazol/farmacología , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Fibroblastos/patología , Ratones , Trastornos del Humor/tratamiento farmacológico , Olanzapina/administración & dosificación , Olanzapina/farmacología , PPAR gamma/análisis , PPAR gamma/sangre , Piperazinas/administración & dosificación , Piperazinas/farmacología , Triglicéridos/análisis , Triglicéridos/sangre
8.
Eur J Pharm Sci ; 123: 135-142, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30036580

RESUMEN

We aimed at studying the potential mechanisms in the preventive effect of resveratrol on serum deprivation induced caspase 3 activation on non-transformed cells. METHODS: Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation, reactive oxygen species production and depolarization of the mitochondrial membrane were measured by fluorescence methods. The involvement of intracellular receptors and autophagy in the effect of resveratrol were analyzed by using specific agonists and antagonists. The role of autophagy was further examined by Western Blot analysis of its protein markers, LC3-II and p62 as well as by acridine orange staining of acidic vacuoles. RESULTS: We found that neither aromatic hydrocarbon receptors nor estrogen receptors play an important role in the cytoprotective effect of resveratrol. Reactive oxygen species production was not significantly altered by either serum deprivation or resveratrol treatment. In the presence of serum deprivation resveratrol however, induced a significant depolarization in mitochondrial membrane potential. The autophagy inhibitor, chloroquine not only eliminated the preventive effect of resveratrol, but also turned it to deleterious suggesting the prominent role of autophagy induction in the cytoprotective effect. Resveratrol did not alter LC3-II expression, but facilitated p62 degradation in serum deprived cells, suggesting its ability to augment the late phase of autophagy and thus promote the autophagic flux. CONCLUSION: We have demonstrated that resveratrol can protect primary fibroblasts against serum deprivation induced apoptosis by provoking mild mitochondrial stress and consequent up-regulation of autophagic flux.


Asunto(s)
Caspasa 3/farmacología , Inhibidores de Caspasas/farmacología , Fibroblastos/efectos de los fármacos , Resveratrol/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Caspasa 3/metabolismo , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Especies Reactivas de Oxígeno/metabolismo
9.
Croat Med J ; 56(2): 78-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25891866

RESUMEN

AIM: To study the effect of resveratrol on survival and caspase 3 activation in non-transformed cells after serum deprivation. METHODS: Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation and lactate dehydrogenase release were assayed as cell viability measure by using their fluorogenic substrates. The involvement of PI3K, ERK, JNK, p38, and SIRT1 signaling pathways was also examined. RESULTS: Serum deprivation of primary fibroblasts induced significant activation of caspase 3 within 3 hours and reduced cell viability after 24 hours. Resveratrol dose-dependently prevented caspase activation and improved cell viability with 50% inhibitory concentration (IC50)=66.3±13.81 µM. It also reduced the already up-regulated caspase 3 activity when it was added to the cell culture medium after 3 hour serum deprivation, suggesting its rescue effect. Among the major signaling pathways, p38 kinase was critical for the protective effect of resveratrol which was abolished completely in the presence of p38 inhibitor. CONCLUSION: Resveratrol showed protective effect against cell death in a rather high dose. Involvement of p38 kinase in this effect suggests the role of mild stress in its cytoprotective action. Furthermore due to its rescue effect, resveratrol may be used not only for prevention, but also treatment of age-related degenerative diseases, but in the higher dose than consumed in conventional diet.


Asunto(s)
Antioxidantes/farmacología , Caspasa 3/metabolismo , Fibroblastos/efectos de los fármacos , Estilbenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos/citología , Fibroblastos/enzimología , L-Lactato Deshidrogenasa/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Resveratrol , Transducción de Señal , Sirtuina 1/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA