Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(6): 061301, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36018664

RESUMEN

We report the first detection of the dark matter distribution around Lyman break galaxies (LBGs) at high redshift through the cosmic microwave background (CMB) lensing measurements with the public Planck PR3 κ map. The LBG sample consists of 1 473 106 objects with the median redshift of z∼4 that are identified in a total area of 305 deg^{2} observed by the Hyper Suprime-Cam Strategic Survey Program survey. After careful investigations of systematic uncertainties, such as contamination from foreground galaxies and cosmic infrared background, we obtain the significant detection of the CMB lensing signal at 5.1σ that is dominated by 2-halo term signals of the LBGs. Fitting a simple model consisting of the Navarro-Frenk-White profile and the linear-bias model, we obtain the typical halo mass of M_{h}=2.9_{-2.5}^{+9.5}×10^{11} h^{-1} M_{⊙}. Combining the CMB lensing and galaxy-galaxy clustering signals on the large scales, we demonstrate the first cosmological analysis at z∼4 that constrains (Ω_{m0},σ_{8}). We find that our constraint on σ_{8} is roughly consistent with the Planck cosmology, while this σ_{8} constraint is lower than the Planck cosmology over the 1σ level. This study opens up a new window for constraining cosmological parameters at high redshift by the combination of CMB and high-z galaxies, as well as studying the interplay between galaxy evolution and large-scale structure at such high redshift, by upcoming CMB and optical and near-infrared imaging surveys.

3.
Nature ; 542(7639): 32, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28150763
4.
Proc Natl Acad Sci U S A ; 114(9): 2099-2100, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28167783
5.
Proc Natl Acad Sci U S A ; 112(40): 12243-5, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26417091

RESUMEN

Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

6.
Proc Natl Acad Sci U S A ; 112(11): 3173-5, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25784761
7.
Proc Natl Acad Sci U S A ; 111(22): 7914-9, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843167

RESUMEN

We use high-resolution cosmological hydrodynamic galaxy formation simulations to gain insights into how galaxies lose their cold gas at low redshift as they migrate from the field to the high-density regions of clusters of galaxies. We find that beyond three cluster virial radii, the fraction of gas-rich galaxies is constant, representing the field. Within three cluster-centric radii, the fraction of gas-rich galaxies declines steadily with decreasing radius, reaching <10% near the cluster center. Our results suggest galaxies start to feel the effect of the cluster environment on their gas content well beyond the cluster virial radius. We show that almost all gas-rich galaxies at the cluster virial radius are falling in for the first time at nearly radial orbits. Furthermore, we find that almost no galaxy moving outward at the cluster virial radius is gas-rich (with a gas-to-baryon ratio greater than 1%). These results suggest that galaxies that fall into clusters lose their cold gas within a single radial round-trip.

8.
Proc Natl Acad Sci U S A ; 108(9): 3487-92, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21321229

RESUMEN

Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This "missing baryon" puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above ∼5 x 10(13)h(-1)(72)M. This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons.

9.
Nature ; 426(6968): 810-2, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14685230

RESUMEN

Gravitational lensing is a powerful tool for the study of the distribution of dark matter in the Universe. The cold-dark-matter model of the formation of large-scale structures (that is, clusters of galaxies and even larger assemblies) predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 arcsec. Numerous searches for large-separation lensed quasars have, however, been unsuccessful. All of the roughly 70 lensed quasars known, including the first lensed quasar discovered, have smaller separations that can be explained in terms of galaxy-scale concentrations of baryonic matter. Although gravitationally lensed galaxies with large separations are known, quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. Here we report the discovery of a lensed quasar, SDSS J1004 + 4112, which has a maximum separation between the components of 14.62 arcsec. Such a large separation means that the lensing object must be dominated by dark matter. Our results are fully consistent with theoretical expectations based on the cold-dark-matter model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA