Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
2.
Ann Neurol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263992

RESUMEN

OBJECTIVES: Spinocerebellar ataxia 27B due to GAA repeat expansions in the fibroblast growth factor 14 (FGF14) gene has recently been recognized as a common cause of late-onset hereditary cerebellar ataxia. Here we present the first report of this disease in the US population, characterizing its clinical manifestations, disease progression, pathological abnormalities, and response to 4-aminopyridine in a cohort of 102 patients bearing GAA repeat expansions. METHODS: We compiled a series of patients with SCA27B, recruited from 5 academic centers across the United States. Clinical manifestations and patient demographics were collected retrospectively from clinical records in an unblinded approach using a standardized form. Post-mortem analysis was done on 4 brains of patients with genetically confirmed SCA27B. RESULTS: In our cohort of 102 patients with SCA27B, we found that SCA27B was a late-onset (57 ± 12.5 years) slowly progressive ataxia with an episodic component in 51% of patients. Balance and gait impairment were almost always present at disease onset. The principal finding on post-mortem examination of 4 brain specimens was loss of Purkinje neurons that was most severe in the vermis most particularly in the anterior vermis. Similar to European populations, a high percent of patients 21/28 (75%) reported a positive treatment response with 4-aminopyridine. INTERPRETATION: Our study further estimates prevalence and further expands the clinical, imaging and pathological features of SCA27B, while looking at treatment response, disease progression, and survival in patients with this disease. Testing for SCA27B should be considered in all undiagnosed ataxia patients, especially those with episodic onset. ANN NEUROL 2024.

3.
Nat Commun ; 15(1): 7239, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174524

RESUMEN

Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.


Asunto(s)
División Celular , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Humanos , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Ratones , Neurogénesis/genética , Masculino , Femenino , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Modelos Animales de Enfermedad , Polaridad Celular
4.
Am J Hum Genet ; 111(9): 1805-1809, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39168121

RESUMEN

Polygenic risk scores (PRSs) are an important tool for understanding the role of common genetic variants in human disease. Standard best practices recommend that PRSs be analyzed in cohorts that are independent of the genome-wide association study (GWAS) used to derive the scores without sample overlap or relatedness between the two cohorts. However, identifying sample overlap and relatedness can be challenging in an era of GWASs performed by large biobanks and international research consortia. Although most genomics researchers are aware of best practices and theoretical concerns about sample overlap and relatedness between GWAS and PRS cohorts, the prevailing assumption is that the risk of bias is small for very large GWASs. Here, we present two real-world examples demonstrating that sample overlap and relatedness is not a minor or theoretical concern but an important potential source of bias in PRS studies. Using a recently developed statistical adjustment tool, we found that excluding overlapping and related samples was equal to or more powerful than adjusting for overlap bias. Our goal is to make genomics researchers aware of the magnitude of risk of bias from sample overlap and relatedness and to highlight the need for mitigation tools, including independent validation cohorts in PRS studies, continued development of statistical adjustment methods, and tools for researchers to test their cohorts for overlap and relatedness with GWAS cohorts without sharing individual-level data.


Asunto(s)
Sesgo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Herencia Multifactorial/genética , Estudios de Cohortes , Polimorfismo de Nucleótido Simple , Femenino , Factores de Riesgo , Puntuación de Riesgo Genético
5.
Ophthalmol Sci ; 4(5): 100535, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091897

RESUMEN

Objective: Abnormal changes in metabolite levels in serum or plasma have been highlighted in several studies in age-related macular degeneration (AMD), the leading cause of irreversible vision loss. Specific changes in lipid profiles are associated with an increased risk of AMD. Metabolites could thus be used to investigate AMD disease mechanisms or incorporated into AMD risk prediction models. However, whether particular metabolites causally affect the disease has yet to be established. Design: A 3-tiered analysis of blood metabolites in the United Kingdom (UK) Biobank cohort to identify metabolites that differ in AMD patients with evidence for a putatively causal role in AMD. Participants: A total of 72 376 donors from the UK Biobank cohort including participants with AMD (N = 1353) and non-AMD controls (N = 71 023). Methods: We analyzed 325 directly measured or derived blood metabolites from the UK Biobank for 72 376 donors to identify AMD-associated metabolites. Genome-wide association studies for 325 metabolites in 98 316 European participants from the UK Biobank were performed. The causal effects of these metabolites in AMD were tested using a 2-sample Mendelian randomization approach. The predictive value of these measurements together with sex and age was assessed by developing a machine learning classifier. Main Outcome Measures: Evaluating metabolic biomarkers associated with AMD susceptibility and investigating their potential causal contribution to the development of the disease. Results: This study noted age to be the prominent risk factor associated with AMD development. While accounting for age and sex, we identified 84 metabolic markers as significantly (false discovery rate-adjusted P value < 0.05) associated with AMD. Lipoprotein subclasses comprised the majority of the AMD-associated metabolites (39%) followed by several lipoprotein to lipid ratios. Nineteen metabolites showed a likely causative role in AMD etiology. Of these, 6 lipoproteins contain very small, very low-density lipoprotein (VLDL), and phospholipids to total lipid ratio in medium VLDL. Based on this we postulate that depletion of circulating very small VLDLs is likely causal for AMD. The risk prediction model constructed from the metabolites, age and sex, identified age as the primary predictive factor with a much smaller contribution by metabolites to AMD risk prediction. Conclusions: This study underscores the pronounced role of lipids in AMD susceptibility and the likely causal contribution of particular subclasses of lipoproteins to AMD. Our study provides valuable insights into the metabopathological mechanisms of AMD disease development and progression.

6.
Orphanet J Rare Dis ; 19(1): 288, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095811

RESUMEN

BACKGROUND: Significant recent efforts have facilitated increased access to clinical genetics assessment and genomic sequencing for children with rare diseases in many centres, but there remains a service gap for adults. The Austin Health Adult Undiagnosed Disease Program (AHA-UDP) was designed to complement existing UDP programs that focus on paediatric rare diseases and address an area of unmet diagnostic need for adults with undiagnosed rare conditions in Victoria, Australia. It was conducted at a large Victorian hospital to demonstrate the benefits of bringing genomic techniques currently used predominantly in a research setting into hospital clinical practice, and identify the benefits of enrolling adults with undiagnosed rare diseases into a UDP program. The main objectives were to identify the causal mutation for a variety of diseases of individuals and families enrolled, and to discover novel disease genes. METHODS: Unsolved patients in whom standard genomic diagnostic techniques such as targeted gene panel, exome-wide next generation sequencing, and/or chromosomal microarray, had already been performed were recruited. Genome sequencing and enhanced genomic analysis from the research setting were applied to aid novel gene discovery. RESULTS: In total, 16/50 (32%) families/cases were solved. One or more candidate variants of uncertain significance were detected in 18/50 (36%) families. No candidate variants were identified in 16/50 (32%) families. Two novel disease genes (TOP3B, PRKACB) and two novel genotype-phenotype correlations (NARS, and KMT2C genes) were identified. Three out of eight patients with suspected mosaic tuberous sclerosis complex had their diagnosis confirmed which provided reproductive options for two patients. The utility of confirming diagnoses for patients with mosaic conditions (using high read depth sequencing and ddPCR) was not specifically envisaged at the onset of the project, but the flexibility to offer recruitment and analyses on an as-needed basis proved to be a strength of the AHA-UDP. CONCLUSION: AHA-UDP demonstrates the utility of a UDP approach applying genome sequencing approaches in diagnosing adults with rare diseases who have had uninformative conventional genetic analysis, informing clinical management, recurrence risk, and recommendations for relatives.


Asunto(s)
Enfermedades Raras , Humanos , Adulto , Femenino , Masculino , Australia , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Enfermedades no Diagnosticadas/genética , Enfermedades no Diagnosticadas/diagnóstico , Pruebas Genéticas/métodos , Persona de Mediana Edad , Adulto Joven
7.
Neurol Genet ; 10(5): e200181, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39131487

RESUMEN

Objectives: Purine-rich element-binding protein alpha (PURA) regulates gene expression and is ubiquitously expressed with an enrichment in neural tissues. Pathogenic variants in PURA cause the neurodevelopmental disorder PURA syndrome that has a variable phenotype but typically comprises moderate-to-severe global developmental delay, intellectual disability, early-onset hypotonia and hypothermia, epilepsy, feeding difficulties, movement disorders, and subtle facial dysmorphism. Speech is reportedly absent in most, but the specific linguistic phenotype is not well described. Methods: We used genome sequencing to identify a pathogenic gene variant as part of a study of children ascertained for severe primary speech disorder in the absence of moderate or severe ID. Results: The novel PURA c.296G>T (p.Arg99Leu) pathogenic missense variant segregated in the female proband and her affected mother. The proband had dysarthria; phonological disorder; and severe receptive and expressive language impairment, borderline intellect, attention difficulties, oropharyngeal dysmotility, and dysmorphic facial features. Her mother had dysarthria, moderate receptive language impairment, and borderline intellect. Both the proband and her mother completed mainstream schooling with classroom support. Discussion: This is the first inherited PURA pathogenic germline variant in over 600 unrelated families documented on ClinVar or reported in the literature. PURA testing should be considered in families with primary speech disorder and borderline intellectual disability, given the specific genetic counseling implications.

8.
Nat Commun ; 15(1): 6327, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068203

RESUMEN

Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness.


Asunto(s)
Músculo Esquelético , Expansión de Repetición de Trinucleótido , Población Blanca , Humanos , Masculino , Femenino , Adulto , Expansión de Repetición de Trinucleótido/genética , Persona de Mediana Edad , Población Blanca/genética , Músculo Esquelético/patología , Transportadoras de Casetes de Unión a ATP/genética , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Linaje , Anciano , Adulto Joven , Fibroblastos/metabolismo , Fibroblastos/patología , Debilidad Muscular/genética , Debilidad Muscular/patología , Adolescente , Distrofias Musculares
9.
Artículo en Inglés | MEDLINE | ID: mdl-38726482

RESUMEN

In patients of Asian ancestry, a heterozygous CGG repeat expansion of >100 units in LRP12 is the cause of oculopharyngodistal myopathy type 1 (OPDM1). Repeat lengths of between 61 and 100 units have been associated with rare amyotrophic lateral sclerosis (ALS) cases of Asian ancestry, although with unusually long disease duration and without significant upper motor neuron involvement. This study sought to determine whether LRP12 CGG repeat expansions were also present in ALS patients of European ancestry. Whole-genome sequencing data from 608 sporadic ALS patients, 35 familial ALS probands, and 4703 neurologically normal controls were screened for LRP12 CGG expansions using ExpansionHunter v4. All individuals had LRP12 CGG repeat lengths within the normal range of 3-25 units. To date, LRP12 CGG repeat expansions have not been reported in ALS patients of European ancestry and may be limited to rare ALS patients of Asian ancestry and atypical clinical presentations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Población Blanca , Humanos , Esclerosis Amiotrófica Lateral/genética , Masculino , Femenino , Población Blanca/genética , Persona de Mediana Edad , Anciano , Adulto , Proteínas Relacionadas con Receptor de LDL/genética , Estudios de Cohortes , Expansión de Repetición de Trinucleótido/genética
10.
Lancet Haematol ; 11(4): e253-e264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432242

RESUMEN

BACKGROUND: Detection of anaemia is crucial for clinical medicine and public health. Current WHO anaemia definitions are based on statistical thresholds (fifth centiles) set more than 50 years ago. We sought to establish evidence for the statistical haemoglobin thresholds for anaemia that can be applied globally and inform WHO and clinical guidelines. METHODS: In this analysis we identified international data sources from populations in the USA, England, Australia, China, the Netherlands, Canada, Ecuador, and Bangladesh with sufficient clinical and laboratory information collected between 1998 and 2020 to obtain a healthy reference sample. Individuals with clinical or biochemical evidence of a condition that could reduce haemoglobin concentrations were excluded. We estimated haemoglobin thresholds (ie, 5th centiles) for children aged 6-23 months, 24-59 months, 5-11 years, and 12-17 years, and adults aged 18-65 years (including during pregnancy) for individual datasets and pooled across data sources. We also collated findings from three large-scale genetic studies to summarise genetic variants affecting haemoglobin concentrations in different ancestral populations. FINDINGS: We identified eight data sources comprising 18 individual datasets that were eligible for inclusion in the analysis. In pooled analyses, the haemoglobin fifth centile was 104·4 g/L (90% CI 103·5-105·3) in 924 children aged 6-23 months, 110·2 g/L (109·5-110·9) in 1874 children aged 24-59 months, and 114·4 g/L (113·6-115·2) in 1839 children aged 5-11 years. Values diverged by sex in adolescents and adults. In pooled analyses, the fifth centile was 122·2 g/L (90% CI 121·3-123·1) in 1741 female adolescents aged 12-17 years and 128·2 g/L (126·4-130·0) in 1103 male adolescents aged 12-17 years. In pooled analyses of adults aged 18-65 years, the fifth centile was 119·7 g/L (90% CI 119·1-120·3) in 3640 non-pregnant females and 134·9 g/L (134·2-135·6) in 2377 males. Fifth centiles in pregnancy were 110·3 g/L (90% CI 109·5-111·0) in the first trimester (n=772) and 105·9 g/L (104·0-107·7) in the second trimester (n=111), with insufficient data for analysis in the third trimester. There were insufficient data for adults older than 65 years. We did not identify ancestry-specific high prevalence of non-clinically relevant genetic variants that influence haemoglobin concentrations. INTERPRETATION: Our results enable global harmonisation of clinical and public health haemoglobin thresholds for diagnosis of anaemia. Haemoglobin thresholds are similar between sexes until adolescence, after which males have higher thresholds than females. We did not find any evidence that thresholds should differ between people of differering ancestries. FUNDING: World Health Organization and the Bill & Melinda Gates Foundation.


Asunto(s)
Anemia , Adulto , Niño , Embarazo , Adolescente , Humanos , Masculino , Femenino , Anemia/diagnóstico , Anemia/epidemiología , Hemoglobinas/análisis , Canadá , China , Países Bajos
11.
Ann Clin Transl Neurol ; 11(5): 1250-1266, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38544359

RESUMEN

OBJECTIVE: Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS: In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS: Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION: Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.


Asunto(s)
Secuenciación del Exoma , Enfermedades Neuromusculares , Humanos , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/diagnóstico , Masculino , Femenino , Adulto , Análisis de Secuencia de ARN/métodos , Niño , Adolescente , Exoma/genética , Persona de Mediana Edad , Adulto Joven , Preescolar , Secuenciación de Nucleótidos de Alto Rendimiento , Lactante , Pruebas Genéticas/métodos
12.
medRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352438

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.

13.
EBioMedicine ; 99: 104931, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38150853

RESUMEN

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Asunto(s)
Ataxia Cerebelosa , Ataxia de Friedreich , Niño , Humanos , Ataxia/diagnóstico , Ataxia/genética , Australia , Canadá , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Estudios Transversales , Ataxia de Friedreich/genética
14.
Epilepsia Open ; 9(2): 758-764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38129960

RESUMEN

About 50% of individuals with developmental and epileptic encephalopathies (DEEs) are unsolved following genetic testing. Deep intronic variants, defined as >100 bp from exon-intron junctions, contribute to disease by affecting the splicing of mRNAs in clinically relevant genes. Identifying deep intronic pathogenic variants is challenging and resource intensive, and interpretation is difficult due to limited functional annotations. We aimed to identify deep intronic variants in individuals suspected to have unsolved single gene DEEs. In a research cohort of unsolved cases of DEEs, we searched for children with a DEE syndrome predominantly caused by variants in specific genes in >80% of described cases. We identified two children with Dravet syndrome and one individual with classic lissencephaly. Multiple sequencing and bioinformatics strategies were employed to interrogate intronic regions in SCN1A and PAFAH1B1. A novel de novo deep intronic 12 kb deletion in PAFAH1B1 was identified in the individual with lissencephaly. We showed experimentally that the deletion disrupts mRNA splicing, which results in partial intron retention after exon 2 and disruption of the highly conserved LisH motif. We demonstrate that targeted interrogation of deep intronic regions using multiple genomics technologies, coupled with functional analysis, can reveal hidden causes of unsolved monogenic DEE syndromes. PLAIN LANGUAGE SUMMARY: Deep intronic variants can cause disease by affecting the splicing of mRNAs in clinically relevant genes. A deep intronic deletion that caused abnormal splicing of the PAFAH1B1 gene was identified in a patient with classic lissencephaly. Our findings reinforce that targeted interrogation of deep intronic regions and functional analysis can reveal hidden causes of unsolved epilepsy syndromes.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Epilepsias Mioclónicas , Niño , Humanos , Intrones/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Pruebas Genéticas , Mutación , Epilepsias Mioclónicas/genética
15.
J Speech Lang Hear Res ; : 1-10, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052068

RESUMEN

PURPOSE: To our knowledge, there are no data examining the agreement between self-reported and clinician-rated stuttering severity. In the era of big data, self-reported ratings have great potential utility for large-scale data collection, where cost and time preclude in-depth assessment by a clinician. Equally, there is increasing emphasis on the need to recognize an individual's experience of their own condition. Here, we examined the agreement between self-reported stuttering severity compared to clinician ratings during a speech assessment. As a secondary objective, we determined whether self-reported stuttering severity correlated with an individual's subjective impact of stuttering. METHOD: Speech-language pathologists conducted face-to-face speech assessments with 195 participants (137 males) aged 5-84 years, recruited from a cohort of people with self-reported stuttering. Stuttering severity was rated on a 10-point scale by the participant and by two speech-language pathologists. Participants also completed the Overall Assessment of the Subjective Experience of Stuttering (OASES). Clinician and participant ratings were compared. The association between stuttering severity and the OASES scores was examined. RESULTS: There was a strong positive correlation between speech-language pathologist and participant-reported ratings of stuttering severity. Participant-reported stuttering severity correlated weakly with the four OASES domains and with the OASES overall impact score. CONCLUSIONS: Participants were able to accurately rate their stuttering severity during a speech assessment using a simple one-item question. This finding indicates that self-report stuttering severity is a suitable method for large-scale data collection. Findings also support the collection of self-report subjective experience data using questionnaires, such as the OASES, which add vital information about the participants' experience of stuttering that is not captured by overt speech severity ratings alone.

17.
Brain ; 146(12): 5086-5097, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977818

RESUMEN

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering. We studied a large four-generation family in which persistent stuttering was inherited in an autosomal dominant manner with disruption of the cortico-basal-ganglia-thalamo-cortical network found on imaging. Exome sequencing of three affected family members revealed the PPID c.808C>T (p.Pro270Ser) variant that segregated with stuttering in the family. We generated a Ppid p.Pro270Ser knock-in mouse model and performed ex vivo imaging to assess for brain changes. Diffusion-weighted MRI in the mouse revealed significant microstructural changes in the left corticospinal tract, as previously implicated in stuttering. Quantitative susceptibility mapping also detected changes in cortico-striatal-thalamo-cortical loop tissue composition, consistent with findings in affected family members. This is the first report to implicate a chaperone protein in the pathogenesis of stuttering. The humanized Ppid murine model recapitulates network findings observed in affected family members.


Asunto(s)
Tartamudeo , Humanos , Animales , Ratones , Tartamudeo/genética , Tartamudeo/patología , Peptidil-Prolil Isomerasa F , Habla , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Mapeo Encefálico
18.
Emerg Top Life Sci ; 7(3): 349-359, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37733280

RESUMEN

Hereditary cerebellar ataxias are a heterogenous group of progressive neurological disorders that are disproportionately caused by repeat expansions (REs) of short tandem repeats (STRs). Genetic diagnosis for RE disorders such as ataxias are difficult as the current gold standard for diagnosis is repeat-primed PCR assays or Southern blots, neither of which are scalable nor readily available for all STR loci. In the last five years, significant advances have been made in our ability to detect STRs and REs in short-read sequencing data, especially whole-genome sequencing. Given the increasing reliance of genomics in diagnosis of rare diseases, the use of established RE detection pipelines for RE disorders is now a highly feasible and practical first-step alternative to molecular testing methods. In addition, many new pathogenic REs have been discovered in recent years by utilising WGS data. Collectively, genomes are an important resource/platform for further advancements in both the discovery and diagnosis of REs that cause ataxia and will lead to much needed improvement in diagnostic rates for patients with hereditary ataxia.


Asunto(s)
Ataxia Cerebelosa , Humanos , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Ataxia/diagnóstico , Ataxia/genética , Genómica/métodos , Secuenciación Completa del Genoma/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
19.
Ann Neurol ; 94(5): 825-835, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597255

RESUMEN

OBJECTIVE: Familial mesial temporal lobe epilepsy (FMTLE) is an important focal epilepsy syndrome; its molecular genetic basis is unknown. Clinical descriptions of FMTLE vary between a mild syndrome with prominent déjà vu to a more severe phenotype with febrile seizures and hippocampal sclerosis. We aimed to refine the phenotype of FMTLE by analyzing a large cohort of patients and asked whether common risk variants for focal epilepsy and/or febrile seizures, measured by polygenic risk scores (PRS), are enriched in individuals with FMTLE. METHODS: We studied 134 families with ≥ 2 first or second-degree relatives with temporal lobe epilepsy, with clear mesial ictal semiology required in at least one individual. PRS were calculated for 227 FMTLE cases, 124 unaffected relatives, and 16,077 population controls. RESULTS: The age of patients with FMTLE onset ranged from 2.5 to 70 years (median = 18, interquartile range = 13-28 years). The most common focal seizure symptom was déjà vu (62% of cases), followed by epigastric rising sensation (34%), and fear or anxiety (22%). The clinical spectrum included rare cases with drug-resistance and/or hippocampal sclerosis. FMTLE cases had a higher mean focal epilepsy PRS than population controls (odds ratio = 1.24, 95% confidence interval = 1.06, 1.46, p = 0.007); in contrast, no enrichment for the febrile seizure PRS was observed. INTERPRETATION: FMTLE is a generally mild drug-responsive syndrome with déjà vu being the commonest symptom. In contrast to dominant monogenic focal epilepsy syndromes, our molecular data support a polygenic basis for FMTLE. Furthermore, the PRS data suggest that sub-genome-wide significant focal epilepsy genome-wide association study single nucleotide polymorphisms are important risk variants for FMTLE. ANN NEUROL 2023;94:825-835.


Asunto(s)
Epilepsia del Lóbulo Temporal , Convulsiones Febriles , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/diagnóstico , Estudio de Asociación del Genoma Completo , Convulsiones Febriles/genética , Imagen por Resonancia Magnética , Electroencefalografía , Síndrome , Hipocampo
20.
medRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461515

RESUMEN

Background: The evolution of tuberculosis (TB) disease during the clinical latency period remains incompletely understood. Methods: 250 HIV-uninfected, adult household contacts of rifampicin-resistant TB with a negative symptom screen underwent baseline 18F-Fluorodeoxyglucose positron emission and computed tomography (PET/CT), repeated in 112 after 5-15 months. Following South African and WHO guidelines, participants did not receive preventive therapy. All participants had intensive baseline screening with spontaneous, followed by induced, sputum sampling and were then observed for an average of 4.7 years for culture-positive disease. Baseline PET/CT abnormalities were evaluated in relation to culture-positive disease. Results: At baseline, 59 (23.6%) participants had lung PET/CT findings consistent with TB of which 29 (11.6%) were defined as Subclinical TB, and 30 (12%) Subclinical TB-inactive. A further 83 (33.2%) had other lung parenchymal abnormalities and 108 (43.2%) had normal lungs. Over 1107-person years of follow-up 14 cases of culture-positive TB were diagnosed. Six cases were detected by intensive baseline screening, all would have been missed by the South African symptom-based screening strategy and only one detected by a WHO-recommended chest X-Ray screening strategy. Those with baseline Subclinical TB lesions on PET/CT were significantly more likely to be diagnosed with culture-positive TB over the study period, compared to those with normal lung parenchyma (10/29 [34.5%] vs 2/108 [1.9%], Hazard Ratio 22.37 [4.89-102.47, p<0.001]). Conclusions: These findings challenge the latent/active TB paradigm demonstrating that subclinical disease exists up to 4 years prior to microbiological detection and/or symptom onset. There are important implications for screening and management of TB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA