Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Antimicrob Agents ; 63(5): 107120, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38417705

RESUMEN

OBJECTIVES: This study aimed to appraise clinical practice guidelines (CPGs) for the treatment of carbapenem-resistant Gram-negative Bacilli (CRGNB) infections and to summarise the recommendations. METHODS: A systematic search of the literature published from January 2012 to March 2023 was undertaken to identify CPGs related to CRGNB infections treatment. The methodological and reporting quality of eligible CPGs were assessed using six domains of the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool and seven domains of the Reporting Items for practice Guidelines in HealThcare (RIGHT) checklist. Basic information and recommendations of included CPGs were extracted and compared. RESULTS: A total of 21 CPGs from 7953 relevant articles were included. The mean overall AGREE II score was 62.7%, and was highest for "clarity of presentation" (90.2%) and lowest for "stakeholder involvement" (44.8%). The overall reporting quality of all of the CPGs was suboptimal, with the proportion of eligible items ranging from 45.7 to 85.7%. The treatment of CRGNB infections is related to the type of pathogen, the sensitivity of antimicrobial agents, and the site of infection. In general, the recommended options mainly included novel ß-lactam/ ß-lactamase inhibitors, cefiderocol, ampicillin-sulbactam (mainly for carbapenem-resistant Acinetobacter baumannii [CRAB]), and combination therapy, involving polymyxin B/colistin, tigecycline (except for carbapenem-resistant Pseudomonas aeruginosa), aminoglycosides, carbapenems, fosfomycin, and sulbactam (mainly for CRAB). CONCLUSIONS: The methodological and reporting quality of CPGs for the treatment of CRGNB infections are generally suboptimal and need further improvement. Both monotherapy with novel drugs and combination therapy play important roles in the treatment.


Asunto(s)
Antibacterianos , Carbapenémicos , Bacterias Gramnegativas , Infecciones por Bacterias Gramnegativas , Guías de Práctica Clínica como Asunto , Humanos , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Carbapenémicos/uso terapéutico , Carbapenémicos/farmacología , Cefiderocol , Fosfomicina/uso terapéutico , Fosfomicina/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Pruebas de Sensibilidad Microbiana/normas , Sulbactam/uso terapéutico , Sulbactam/farmacología , Tigeciclina/uso terapéutico , Tigeciclina/farmacología
2.
RSC Adv ; 13(49): 34884-34890, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38035241

RESUMEN

Residual antibiotics in nature are an important cause of antimicrobial drug resistance, and how to deal with residual ß-lactam antibiotics in aqueous environments has become an urgent issue. In this work, magnetic zeolitic imidazolate frameworks-8 (ZIF-8) for immobilizing metallo-ß-lactamases (MBLs), or Fe3O4@ZIF-8@MBLs, were successfully synthesized using the one-pot method in aqueous solution. The morphology and chemical structure of Fe3O4@ZIF-8@MBLs were characterized by scanning electron microscopy, energy dispersive spectra, X-ray diffraction, infrared spectra, physical adsorption, and zeta potential. Further, the degradation performance of Fe3O4@ZIF-8@MBLs for ß-lactam antibiotics (penicillin G, cefoperazone, meropenem) in an aqueous environment was investigated by UV-visible absorption spectrophotometry. The results indicated that Fe3O4@ZIF-8@MBLs, compared to control ZIF-8, exhibited superior degradation ability, excellent reusability, and better stability under several harsh conditions. The strategy of combining ZIF-8 and MBLs to form magnetic porous polymers may be suitable for removing ß-lactam antibiotics from an aqueous environment. This work provided an original insight into future studies on the degradation of ß-lactam antibiotics employing MBLs immobilized by magnetic metal-organic frameworks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA