Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 734
Filtrar
1.
Nat Commun ; 15(1): 4270, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769299

RESUMEN

Néel spin-orbit torque allows a charge current pulse to efficiently manipulate the Néel vector in antiferromagnets, which offers a unique opportunity for ultrahigh density information storage with high speed. However, the reciprocal process of Néel spin-orbit torque, the generation of ultrafast charge current in antiferromagnets has not been demonstrated. Here, we show the experimental observation of charge current generation in antiferromagnetic metallic Mn2Au thin films using ultrafast optical excitation. The ultrafast laser pulse excites antiferromagnetic magnons, resulting in instantaneous non-equilibrium spin polarization at the antiferromagnetic spin sublattices with broken spatial symmetry. Then the charge current is generated directly via spin-orbit fields at the two sublattices, which is termed as the reciprocal phenomenon of Néel spin-orbit torque, and the associated THz emission can be detected at room temperature. Besides the fundamental significance on the Onsager reciprocity, the observed magnonic charge current generation in antiferromagnet would advance the development of antiferromagnetic THz emitter.

2.
BMC Biol ; 22(1): 118, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769528

RESUMEN

BACKGROUND: The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. RESULTS: In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. CONCLUSIONS: In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.


Asunto(s)
Bombyx , Mecanorreceptores , Espermatogénesis , Animales , Espermatogénesis/fisiología , Bombyx/fisiología , Bombyx/genética , Masculino , Mecanorreceptores/fisiología , Mecanorreceptores/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Espermatozoides/fisiología , Espermatozoides/metabolismo
3.
Med ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38781965

RESUMEN

BACKGROUND: Predictive biomarkers and models of immune checkpoint inhibitors (ICIs) have been extensively studied in non-small cell lung cancer (NSCLC). However, evidence for many biomarkers remains inconclusive, and the opaqueness of machine learning models hinders practicality. We aimed to provide compelling evidence for biomarkers and develop a transparent decision tree model. METHODS: We consolidated data from 3,288 ICI-treated patients with NSCLC across real-world multicenter, public cohorts and the Choice-01 trial (ClinicalTrials.gov: NCT03856411). Over 50 features were examined for predicting durable clinical benefits (DCBs) from ICIs. Noteworthy biomarkers were identified to establish a decision tree model. Additionally, we explored the tumor microenvironment and peripheral CD8+ programmed death-1 (PD-1)+ T cell receptor (TCR) profiles. FINDINGS: Multivariate logistic regression analysis identified tumor histology, PD-ligand 1 (PD-L1) expression, tumor mutational burden, line, and regimen of ICI treatment as significant factors. Mutation subtypes of EGFR, KRAS, KEAP1, STK11, and disruptive TP53 mutations were associated with DCB. The decision tree (DT10) model, using the ten clinicopathological and genomic markers, showed superior performance in predicting DCB in the training set (area under the curve [AUC] = 0.82) and consistently outperformed other models in test sets. DT10-predicted-DCB patients manifested longer survival, an enriched inflamed tumor immune phenotype (67%), and higher peripheral TCR diversity, whereas the DT10-predicted-NDB (non-durable benefit) group showed an enriched desert immune phenotype (86%) and higher peripheral TCR clonality. CONCLUSIONS: The model effectively predicted DCB after front-/subsequent-line ICI treatment, with or without chemotherapy, for squamous and non-squamous lung cancer, offering clinicians valuable insights into efficacy prediction using cost-effective variables. FUNDING: This study was supported by the National Key R&D Program of China.

4.
Cell Signal ; 120: 111216, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38729325

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer worldwide. Structural maintenance of chromosomes 2 (SMC2) serves as a predictor of poor prognosis across various cancer types. This study aims to explore the role and underlying mechanisms of SMC2 in LUAD progression. The expression of SMC2 in LUAD tissues and its correlation with prognosis were analyzed by public databases. Knockdown of SMC2 was performed to assess the proliferation, migration and invasion ability of LUAD cells. Bulk RNA sequencing analysis identified enriched cellular pathways and remarkable upregulation of BTG anti-proliferation factor 2 (BTG2) expression after SMC2 knockdown in LUAD cells. Then, BTG2 was silenced to assess the malignant behavior of LUAD cells. Subcutaneous transplantation and intracranial tumor models of LUAD cells in BALB/c nude mice were established to assess the antineoplastic effect of SMC2 knockdown in vivo. Additionally, a lung metastasis model was created to evaluate the pro-metastatic effect of SMC2. Our findings indicated that SMC2 was upregulated in LUAD tissues and cell lines, with higher expression correlating with poor prognosis. SMC2 silencing suppressed the proliferation, migration and invasion ability of LUAD cells by upregulating BTG2 expression via p53 and inactivating ERK and AKT pathways. BTG2 silencing reversed the effects of SMC2 downregulation on malignant behaviors of LUAD cells and restored the phosphorylated ERK and AKT levels. Furthermore, SMC2 knockdown effectively prevented the formation of subcutaneous, intracranial and metastatic tumor in vivo, and upregulation of BTG2 expression after SMC2 knockdown was confirmed in tumor models. This study revealed that SMC2 knockdown restrained the malignant progression of LUAD through upregulation of BTG2 expression and inactivation of ERK and AKT pathways, and SMC2 could be a potential therapeutic target for LUAD treatment.

5.
Precis Clin Med ; 7(2): pbae011, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779359

RESUMEN

Background: Lung squamous cell carcinoma (LUSC) lacks effective targeted therapies and has a poor prognosis. Disruption of squalene epoxidase (SQLE) has been implicated in metabolic disorders and cancer. However, the role of SQLE as a monooxygenase involved in oxidative stress remains unclear. Methods: We analyzed the expression and prognosis of lung adenocarcinoma (LUAD) and LUSC samples from GEO and TCGA databases. The proliferative activity of the tumors after intervention of SQLE was verified by cell and animal experiments. JC-1 assay, flow cytometry, and Western blot were used to show changes in apoptosis after intervention of SQLE. Flow cytometry and fluorescence assay of ROS levels were used to indicate oxidative stress status. Results: We investigated the unique role of SQLE expression in the diagnosis and prognosis prediction of LUSC. Knockdown of SQLE or treatment with the SQLE inhibitor terbinafine can suppress the proliferation of LUSC cells by inducing apoptosis and reactive oxygen species accumulation. However, depletion of SQLE also results in the impairment of lipid peroxidation and ferroptosis resistance such as upregulation of glutathione peroxidase 4. Therefore, prevention of SQLE in synergy with glutathione peroxidase 4 inhibitor RSL3 effectively mitigates the proliferation and growth of LUSC. Conclusion: Our study indicates that the low expression of SQLE employs adaptive survival through regulating the balance of apoptosis and ferroptosis resistance. In future, the combinational therapy of targeting SQLE and ferroptosis could be a promising approach in treating LUSC.

6.
J Cancer ; 15(9): 2691-2711, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577601

RESUMEN

The role of reactive oxygen species (ROS) is critical in the emergence and progression of lung adenocarcinoma (LUAD), affecting cell survival, proliferation, angiogenesis, and metastasis. Further investigations are needed to elucidate these effects' precise pathways and devise therapeutic approaches targeting ROS. Moreover, the expression pattern and clinical significance of the ROS-related genes in LUAD remain elusive. Through comprehensive analysis incorporating 1494 LUAD cases from The Cancer Genome Atlas, six Gene Expression Omnibus series, and a Chinese LUAD cohort, we identified a ROS-related signature with substantial predictive value in various LUAD patient cohorts. The ROS-related signature has demonstrated a significant negative relationship with antitumor immunity and dendritic cell maturation and activation. Moreover, The ROS-related signature showed predictive value on immunotherapy outcomes across multiple types of solid tumors, including LUAD. These findings reinforce the ROS-related signature as a predictive tool for LUAD and provide new insights into its link with antitumor immunity and immunotherapy efficacy. These results have implications for refining clinical assessments and tailoring immunotherapeutic strategies for patients with LUAD.

7.
Angew Chem Int Ed Engl ; : e202402568, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650435

RESUMEN

The inefficient conversion of lead iodide to perovskite has become one of the major challenges in further improving the performance of perovskite solar cells fabricated by the two-step method. Herein, the discontinuous lead iodide layer realized by introduction of a polyfluorinated organic diammonium salt, octafluoro-([1,1'-biphenyl]-4,4'-diyl)-dimethanaminium (OFPP) iodide which does not form low-dimensional perovskites, can enable the satisfactory conversion of lead iodide into perovskite, leading to meliorated crystallinity and enlarged grains in the OFPP modulated perovskite (OFPP-PVK) film. Combined with the effective defect passivation, the OFPP-PVK films show enhanced charge mobility and suppressed charge recombination. Accordingly, the OFPP-based perovskite solar cells exhibit a champion efficiency of 24.76 % with better device stability. Moreover, a superior efficiency of 21.04 % was achieved in a large-area perovskite module (100 cm2). Our work provides a unique insight into the function of organic diammonium additive in boosting photovoltaic performance.

8.
Neurochem Int ; 176: 105737, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599243

RESUMEN

BACKGROUND: Evidence from previous studies indicates that neuroinflammation contributes to the onset of Alzheimer's Disease (AD). Moreover, cellular dysfunction is induced by impaired signaling of neurotransmitters. This study aimed to explore the correlation between cellular immune dysfunction and neurotransmitter changes through cranial Magnetic Resonance Spectroscopy (MRS) in AD patients. METHODS: Here, 32 AD, 40 Vascular Dementia (VD), and 35 Non-Dementia Elderly Control (NDE) cases were enrolled. Flow cytometry was performed to characterize lymphocyte subsets in plasma samples. The IL-1ß and Caspase-1 levels were detected by ELISA. The NLRP3 expression level was measured by Western Blot (WB). The equivalence of N-acetylaspartate (NAA), Creatine (Cr), Choline (Cho), and Inositol (MI) in bilateral hippocampi of patients was examined by MRS. The association of NAA/Cr or MI/Cr ratios with the proportion of T lymphocyte subsets or NK cell subsets was determined through single-factor correlation analysis. RESULTS: The proportion of T lymphocyte subsets was significantly lower in the AD group than in the NDE group (P < 0.01). On the other hand, the Caspase-1, NLRP3, and IL-1ß protein expression levels were significantly higher in the AD group than in the other groups. Further analysis showed that the NAA/Cr ratio was lower in the AD group than in the NDE group. Additionally, a significant positive correlation was found between the NAA/Cr ratio and the MMSE score (r = 0.81, P < 0.01). Moreover, a significant positive correlation was observed between the NAA/Cr and T lymphocyte ratios. The NAA/Cr ratio was significantly negatively correlated with the proportion of NK cells in the blood (r = ï¼0.83, P < 0.01). A significant negative correlation was also recorded between the MI/Cr and T cell ratios in blood samples. CONCLUSIONS: Impaired cellular immune dysfunction in AD patients was significantly correlated with abnormal MRS. Neuroimmune dysfunction may contribute to the pathogenesis of AD and alter the metabolism of neurotransmitters such as aspartic acid and MI in the brains of AD patients. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Enfermedad de Alzheimer , Espectroscopía de Resonancia Magnética , Humanos , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/metabolismo , Masculino , Femenino , Anciano , Espectroscopía de Resonancia Magnética/métodos , Inmunidad Celular , Anciano de 80 o más Años , Persona de Mediana Edad , Colina/metabolismo
9.
Food Res Int ; 184: 114262, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609241

RESUMEN

There are complex and diverse substances in traditional vinegars, some of which have been identified as biologically active factors, but the variety of functional compounds is currently restricted. In this study, it was aimed to determine the bioactive compounds in 10 typical functional vinegars. The findings shown that total flavonoids (0.21-7.19 mg rutin equivalent/mL), total phenolics (0.36-3.20 mg gallic acid equivalent/mL), and antioxidant activities (DPPH: 3.17-47.63 mmol trolox equivalent/L, ABTS: 6.85-178.29 mmol trolox equivalent/L) varied among different functional vinegars. In addition, the concentrations of the polysaccharides (1.17-44.87 mg glucose equivalent/mL) and total saponins (0.67-12.46 mg oleanic acid equivalent/mL) were determined, which might play key role for the function of tested vinegars. A total of 8 organic acids, 7 polyphenol compounds and 124 volatile compounds were measured and tentatively identified. The protocatechuic acid (4.81-485.72 mg/L), chlorogenic acid (2.69-7.52 mg/L), and epicatechin (1.18-97.42 mg/L) were important polyphenol compounds in the functional vinegars. Redundancy analysis indicated that tartaric acid, oxalic acid and chlorogenic acid were significantly positively correlated with antioxidant capacity. Various physiologically active ingredients including cyclo (Pro-Leu), cyclo (Phe-Pro), cyclo (Phe-Val), cyclo (Pro-Val), 1-monopalmitin and 1-eicosanol were firstly detected in functional vinegars. Principle component analysis revealed that volatiles profile of bergamot Monascus aromatic vinegar and Hengshun honey vinegar exhibited distinctive differences from other eight vinegar samples. Moreover, the partial least squares regression analysis demonstrated that 11 volatile compounds were positively correlated with the antioxidant activity of vinegars, which suggested these compounds might be important functional substances in tested vinegars. This study explored several new functionally active compounds in different functional vinegars, which could widen the knowledge of bioactive factor in vinegars and provide new ideas for further development of functional vinegar beverages.


Asunto(s)
Ácido Acético , Antioxidantes , Ácido Clorogénico , Ácido Gálico , Polifenoles
10.
Front Oncol ; 14: 1355643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651157

RESUMEN

Background: The low rates of durable response against relapsed/refractory multiple myeloma (RRMM) in recent studies prompt that chimeric antigen receptor (CAR)-T cell therapies are yet to be optimized. The combined anti-BCMA and anti-CD19 CAR-T cell therapy showed high clinical efficacy in several clinical trials for RRMM. We here conducted a meta-analysis to confirm its efficacy and safety. Methods: We collected data from Embase, Web of Science, PubMed, CNKI, Wanfang and Cochrane databases up to April 2023. We extracted and evaluated data related to the efficacy and safety of combined anti-BCMA and anti-CD19 CAR-T cell therapies in RRMM patients. The data was then analyzed using RevMan5.4 and StataSE-64 software. PROSPERO number was CRD42023455002. Results: Our meta-analysis included 12 relevant clinical trials involving 347 RRMM patients who were treated with combined anti-BCMA and anti-CD19 CAR-T cell therapies. For efficacy assessment, the pooled overall response rate (ORR) was 94% (95% CI: 91%-98%), the complete response rate (CRR) was 50% (95% CI: 29%-71%), and the minimal residual disease (MRD) negativity rate within responders was 73% (95% CI: 66%-80%). In terms of safety, the pooled all-grade cytokine release syndrome (CRS) rate was 98% (95% CI: 97%-100%), grade≥3 CRS rate was 9% (95% CI: 4%-14%), and the incidence of neurotoxicity was 8% (95% CI: 4%-11%). Of hematologic toxicity, neutropenia was 82% (95% CI: 75%-89%), anemia was 71% (95% CI: 53%-90%), thrombocytopenia was 67% (95% CI: 40%-93%) and infection was 42% (95% CI: 9%-76%). The median progression-free survival (PFS) was 12.97 months (95% CI: 6.02-19.91), and the median overall survival (OS) was 26.63 months (95% CI: 8.14-45.11). Conclusions: As a novel immunotherapy strategy with great potential, the combined anti-BCMA and anti-CD19 CAR-T cell therapy showed high efficacy in RRMM, but its safety needs further improvement. This meta-analysis suggests possible optimization of combined CAR-T therapy. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42023455002.

11.
Phys Med Biol ; 69(10)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38593827

RESUMEN

Objective.To address the challenge of meningioma grading, this study aims to investigate the potential value of peritumoral edema (PTE) regions and proposes a unique approach that integrates radiomics and deep learning techniques.Approach.The primary focus is on developing a transfer learning-based meningioma feature extraction model (MFEM) that leverages both vision transformer (ViT) and convolutional neural network (CNN) architectures. Additionally, the study explores the significance of the PTE region in enhancing the grading process.Main results.The proposed method demonstrates excellent grading accuracy and robustness on a dataset of 98 meningioma patients. It achieves an accuracy of 92.86%, precision of 93.44%, sensitivity of 95%, and specificity of 89.47%.Significance.This study provides valuable insights into preoperative meningioma grading by introducing an innovative method that combines radiomics and deep learning techniques. The approach not only enhances accuracy but also reduces observer subjectivity, thereby contributing to improved clinical decision-making processes.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Meningioma , Clasificación del Tumor , Meningioma/diagnóstico por imagen , Meningioma/patología , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Edema/diagnóstico por imagen , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Radiómica
12.
Crit Rev Oncol Hematol ; 198: 104372, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38677356

RESUMEN

BACKGROUND: Randomized controlled trials (RCTs) of systemic therapies for unresectable malignant mesothelioma have reported conflicting results. It is crucial and urgent to find optimal treatment options for this malignancy, which currently has a poor prognosis. METHODS: Databases PubMed, EMBASE, Cochrane Library, ClinicalTrials.gov, and major international conferences were searched until February 29, 2024. The main outcomes of interest were overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and grade ≥3 treatment-related adverse events (TRAEs). RESULTS: We analyzed 16 RCTs with a total of 5018 patients. Among first-line therapies, nivolumab and ipilimumab significantly increased OS and resulted in fewer grade ≥3 TRAEs. Bevacizumab plus chemotherapy significantly increased PFS. Among salvage therapies, ramucirumab and chemotherapy was associated with the best OS and PFS, but resulted in more grade ≥3 TRAEs. Subgroup analysis by histologic types suggested that in first-line settings, bevacizumab and chemotherapy increase OS the most for epithelioid type, while the nivolumab plus ipilimumab treatment increases OS the most for non-epithelioid type. In salvage therapies, ramucirumab and chemotherapy increase OS for both epithelioid and non-epithelioid types. CONCLUSION: Nivolumab plus ipilimumab was associated with the best OS among first-line treatments. Ramucirumab and chemotherapy was associated with the best clinical outcomes in salvage settings. Treatment for malignant mesothelioma should be tailored based on different clinicopathological characteristics.

13.
Thorac Cancer ; 15(13): 1050-1059, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38528429

RESUMEN

BACKGROUND: The aim of the present study was to compare the predictive accuracy of PD-L1 immunohistochemistry (IHC), tissue or blood tumor mutation burden (tTMB, bTMB), gene expression profile (GEP), driver gene mutation, and combined biomarkers for immunotherapy response of advanced non-small cell lung cancer (NSCLC). METHODS: In part 1, clinical trials involved with predictive biomarker exploration for immunotherapy in advanced NSCLC were included. The area under the curve (AUC) of the summary receiver operating characteristic (SROC), sensitivity, specificity, likelihood ratio and predictive value of the biomarkers were evaluated. In part 2, public datasets of immune checkpoint inhibitor (ICI)-treated NSCLC involved with biomarkers were curated (N = 871). Odds ratio (OR) of the positive versus negative biomarker group for objective response rate (ORR) was measured. RESULTS: In part 1, the AUC of combined biomarkers (0.75) was higher than PD-L1 (0.64), tTMB (0.64), bTMB (0.68), GEP (0.67), and driver gene mutation (0.51). Combined biomarkers also had higher specificity, positive likelihood ratio and positive predictive value than single biomarkers. In part 2, the OR of combined biomarkers of PD-L1 plus TMB (PD-L1 cutoff 1%, 0.14; cutoff 50% 0.13) was lower than that of PD-L1 (cutoff 1%, 0.33; cutoff 50% 0.24), tTMB (0.28), bTMB (0.48), EGFR mutation (0.17) and KRAS mutation (0.47), for distinguishing ORR of patients after immunotherapy. Furthermore, positive PD-L1, tTMB-high, wild-type EGFR, and positive PD-L1 plus TMB were associated with prolonged progression-free survival (PFS). CONCLUSION: Combined biomarkers have superior predictive accuracy than single biomarkers for immunotherapy response of NSCLC. Further investigation is warranted to select optimal biomarkers for various clinical settings.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores de Tumor/genética , Femenino , Masculino , Pronóstico , Mutación
14.
Mol Neurobiol ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546929

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the abnormal aggregation of α-synuclein (α-syn) and the loss of dopaminergic neurons. Although microbial infection has been implicated in the pathogenesis of PD, the associated virulence factors and the underlying molecular mechanisms require further elucidation. Here, we found that intestinal infection with Nocardia farcinica induced a series of PD-like symptoms in Caenorhabditis elegans, such as the accelerated degeneration of dopaminergic neurons, impaired locomotion capacity, and enhanced α-syn aggregation, through the disturbance of mitochondrial functions. To identify the potential virulence factors involved in these effects, we knocked out the nbtB/C and nbtS genes in N. farcinica, which are localized in the gene clusters responsible for nocobactin biosynthesis. The deletion of either gene partially rescued the degenerative effects of wild-type N. farcinica on dopaminergic neurons by attenuating mitochondrial dysfunction. LC-MS analysis further identified a decrease in the abundance of several siderophores in the two mutants, including nocobactin NA-a, nocobactin NA-b, and nocardimicin B. Collectively, our results demonstrated that intestinal N. farcinica infection in C. elegans facilitates PD-like pathogenesis and provides novel evidence for the involvement of pathogenic bacteria in neurodegenerative diseases via non-neuroinvasive mechanisms.

15.
PLoS Genet ; 20(3): e1011190, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483970

RESUMEN

A population of neurons interconnected by synapses constitutes a neural circuit, which performs specific functions upon activation. It is essential to identify both anatomical and functional entities of neural circuits to comprehend the components and processes necessary for healthy brain function and the changes that characterize brain disorders. To date, few methods are available to study these two aspects of a neural circuit simultaneously. In this study, we developed FLIPSOT, or functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango. FLIPSOT uses (1) trans-Tango to access postsynaptic neurons genetically, (2) optogenetic approaches to activate (FLIPSOTa) or inhibit (FLIPSOTi) postsynaptic neurons in a random and sparse manner, and (3) fluorescence markers tagged with optogenetic genes to visualize these neurons. Therefore, FLIPSOT allows using a presynaptic driver to identify the behavioral function of individual postsynaptic neurons. It is readily applied to identify functions of individual postsynaptic neurons and has the potential to be adapted for use in mammalian circuits.


Asunto(s)
Drosophila , Optogenética , Animales , Drosophila/genética , Neuronas/fisiología , Optogenética/métodos , Sinapsis/genética
16.
EBioMedicine ; 102: 105092, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547579

RESUMEN

BACKGROUND: The high heterogeneity of tumour and the complexity of tumour microenvironment (TME) greatly impacted the tumour development and the prognosis of cancer in the era of immunotherapy. In this study, we aimed to portray the single cell-characterised landscape of lung adenocarcinoma (LUAD), and develop an integrated signature incorporating both tumour heterogeneity and TME for prognosis stratification. METHODS: Single-cell tagged reverse transcription sequencing (STRT-seq) was performed on tumour tissues and matched normal tissues from 14 patients with LUAD for immune landscape depiction and candidate key genes selection for signature construction. Kaplan-Meier survival analyses and in-vitro cell experiments were conducted to confirm the gene functions. The transcriptomic profile of 1949 patients from 11 independent cohorts including nine public datasets and two in-house cohorts were obtained for validation. FINDINGS: We selected 11 key genes closely related to cell-to-cell interaction, tumour development, T cell phenotype transformation, and Ma/Mo cell distribution, including HLA-DPB1, FAM83A, ITGB4, OAS1, FHL2, S100P, FSCN1, SFTPD, SPP1, DBH-AS1, CST3, and established an integrated 11-gene signature, stratifying patients to High-Score or Low-Score group for better or worse prognosis. Moreover, the prognostically-predictive potency of the signature was validated by 11 independent cohorts, and the immunotherapeutic predictive potency was also validated by our in-house cohort treated by immunotherapy. Additionally, the in-vitro cell experiments and drug sensitivity prediction further confirmed the gene function and generalizability of this signature across the entire RNA profile spectrum. INTERPRETATION: This single cell-characterised 11-gene signature might offer insights for prognosis stratification and potential guidance for treatment selection. FUNDING: Support for the study was provided by National key research and development project (2022YFC2505004, 2022YFC2505000 to Z.W. and J.W.), Beijing Natural Science Foundation (7242114 to J.X.), National Natural Science Foundation of China of China (82102886 to J.X., 81871889 and 82072586 to Z.W.), Beijing Nova Program (20220484119 to J.X.), NSFC general program (82272796 to J.W.), NSFC special program (82241229 to J.W.), CAMS Innovation Fund for Medical Sciences (2021-1-I2M-012, 2022-I2M-1-009 to Z.W. and J.W.), Beijing Natural Science Foundation (7212084 to Z.W.), CAMS Key lab of translational research on lung cancer (2018PT31035 to J.W.), Aiyou Foundation (KY201701 to J.W.). Medical Oncology Key Foundation of Cancer Hospital Chinese Academy of Medical Sciences (CICAMS-MOCP2022003 to J.X.).


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Pronóstico , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Pueblo Asiatico , Comunicación Celular , Microambiente Tumoral/genética , Proteínas Portadoras , Proteínas de Microfilamentos , Proteínas de Neoplasias
17.
Cell Mol Life Sci ; 81(1): 127, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472536

RESUMEN

Reproduction, a fundamental feature of all known life, closely correlates with energy homeostasis. The control of synthesizing and mobilizing lipids are dynamic and well-organized processes to distribute lipid resources across tissues or generations. However, how lipid homeostasis is precisely coordinated during insect reproductive development is poorly understood. Here we describe the relations between energy metabolism and reproduction in the silkworm, Bombyx mori, a lepidopteran model insect, by using CRISPR/Cas9-mediated mutation analysis and comprehensively functional investigation on two major lipid lipases of Brummer (BmBmm) and hormone-sensitive lipase (BmHsl), and the sterol regulatory element binding protein (BmSrebp). BmBmm is a crucial regulator of lipolysis to maintain female fecundity by regulating the triglyceride (TG) storage among the midgut, the fat body, and the ovary. Lipidomics analysis reveals that defective lipolysis of females influences the composition of TG and other membrane lipids in the BmBmm mutant embryos. In contrast, BmHsl mediates embryonic development by controlling sterol metabolism rather than TG metabolism. Transcriptome analysis unveils that BmBmm deficiency significantly improves the expression of lipid synthesis-related genes including BmSrebp in the fat body. Subsequently, we identify BmSrebp as a key regulator of lipid accumulation in oocytes, which promotes oogenesis and cooperates with BmBmm to support the metabolic requirements of oocyte production. In summary, lipid homeostasis plays a vital role in supporting female reproductive success in silkworms.


Asunto(s)
Bombyx , Animales , Femenino , Bombyx/genética , Bombyx/metabolismo , Oogénesis , Ovario , Desarrollo Embrionario , Lípidos , Proteínas de Insectos/metabolismo
18.
Diabetes Metab Syndr Obes ; 17: 1267-1278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496005

RESUMEN

Objective: In this study, we aimed to evaluate the current status of the quality of life (QOL) of pediatric patients and plasma glucose concentration regulation in children with type 1 diabetes (T1DM) in the Ningxia Hui autonomous region. Methods: The study involved children with T1DM admitted to the General Hospital of Ningxia Medical University between October 2011 and October 2021. The children and their parents completed general information and quality of life (QOL) questionnaires. The regulation of plasma glucose concentration was assessed based on HbA1c levels, and plasma glucose and QOL-influencing components were investigated. Results: Among the 136 pediatric patients diagnosed with T1DM, the mean glycated hemoglobin (HbA1c) level was recorded at 8.7% (7.2%, 10.5%). A breakdown of the patient cohort revealed that 44 patients (32.4%) demonstrated good regulation of plasma glucose, 33 patients (24.3%) exhibited acceptable glycemic control, and 59 patients (43.3%) displayed poor regulation of plasma glucose. The control of plasma glucose in pediatric patients diagnosed with T1DM was affected by the duration of the disease, the patient's age, the frequency of daily plasma glucose measurements, the use of CGM, diabetic ketoacidosis (DKA), and the education level of the mother. The control of plasma glucose, dietary management, DKA, the ability to learn, and health education are interfering factors of quality of life in children diagnosed with T1DM. Effective control of plasma glucose may ensure the QOL in children with T1DM, and DKA was the risk factor for QOL. Conclusion: In Ningxia, the regulation of plasma glucose in pediatric and adolescent patients with T1DM remains suboptimal, leading to poor QOL. There is a pressing need to enhance glucose regulation and QOL through comprehensive strategies, which include reinforced dietary management, rigorous monitoring of plasma glucose levels, and heightened health education levels.

19.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467419

RESUMEN

Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.


Asunto(s)
Hígado Graso , Inanición , Animales , Humanos , Pez Cebra , Hígado Graso/genética , Inanición/complicaciones , Larva , Atrofia
20.
Nano Lett ; 24(14): 4165-4171, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38534019

RESUMEN

An electrical-controllable antiferromagnet tunnel junction is a key goal in spintronics, holding immense promise for ultradense and ultrastable antiferromagnetic memory with high processing speed for modern information technology. Here, we have advanced toward this goal by achieving an electrical-controllable antiferromagnet-based tunnel junction of Pt/Co/Pt/Co/IrMn/MgO/Pt. The exchange coupling between antiferromagnetic IrMn and Co/Pt perpendicular magnetic multilayers results in the formation of an interfacial exchange bias and exchange spring in IrMn. Encoding information states "0" and "1" is realized through the exchange spring in IrMn, which can be electrically written by spin-orbit torque switching with high cyclability and electrically read by antiferromagnetic tunneling anisotropic magnetoresistance. Combining spin-orbit torque switching of both exchange spring and exchange bias, a 16 Boolean logic operation is successfully demonstrated. With both memory and logic functionalities integrated into our electrically controllable antiferromagnetic-based tunnel junction, we chart the course toward high-performance antiferromagnetic logic-in-memory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA