Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 244: 114163, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39154599

RESUMEN

Metal-phenolic Networks (MPNs) are a novel class of nanomaterial developed gradually in recent years which are self-assembled by metal ions and polyphenolic ligands. Due to their environmental protection, good adhesion, and biocompatibility with green phenolic ligands, MPNs can be used as a new type of nanomaterial. They show excellent properties such as anti-inflammatory, antioxidant, antibacterial, and anticancer, and have been widely studied in the biomedical field. As one of the most common subclasses of the MPNs family, copper-based MPNs have been widely studied for drug delivery, Photodynamic Therapy (PDT), Chemo dynamic Therapy (CDT), antibacterial and anti-inflammatory, bone tissue regeneration, skin regeneration wound repair, and metal ion imaging. In this paper, the preparation strategies of different types of copper-based MPNs are reviewed. Then, the application status of copper-based MPNs in the biomedical field under different polyphenol ligands is introduced in detail. Finally, the existing problems and challenges of copper-based MPNs are discussed, as well as their future application prospects in the biomedical field.


Asunto(s)
Cobre , Cobre/química , Cobre/farmacología , Humanos , Fenoles/química , Fenoles/farmacología , Animales , Nanoestructuras/química , Antioxidantes/farmacología , Antioxidantes/química , Sistemas de Liberación de Medicamentos , Fotoquimioterapia
2.
ACS Biomater Sci Eng ; 10(7): 4093-4113, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38829538

RESUMEN

Titanium (Ti) and its alloys are widely used biomaterials in bone repair. Although these biomaterials possess stable properties and good biocompatibility, the high elastic modulus and low surface activity of Ti implants have often been associated with infection, inflammation, and poor osteogenesis. Therefore, there is an urgent need to modify the surface of Ti implants, where changes in surface morphology or coatings loading can confer specific functions to help them adapt to the osseointegration formation phase and resist bacterial infection. This can further ensure a healthy microenvironment for bone regeneration as well as the promotion of immunomodulation, angiogenesis, and osteogenesis. Therefore, in this review, we evaluated various functional Ti implants after surface modification, both in terms of static modifications and dynamic response strategies, mainly focusing on the synergistic effects of antimicrobial activities and functionalized osteogenic. Finally, the current challenges and future perspectives are summarized to provide innovative and effective solutions for osseointegration and bone defect repair.


Asunto(s)
Antibacterianos , Oseointegración , Osteogénesis , Prótesis e Implantes , Propiedades de Superficie , Titanio , Titanio/química , Titanio/farmacología , Oseointegración/efectos de los fármacos , Humanos , Osteogénesis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Regeneración Ósea/efectos de los fármacos
3.
ACS Omega ; 9(16): 17784-17807, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680314

RESUMEN

Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.

4.
Mater Today Bio ; 26: 101032, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38533376

RESUMEN

The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA