RESUMEN
Cell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca2+, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear. Here, we show that ER membrane-localized reticulon 4 (RTN4/Nogo) is sufficient to impose neurite outgrowth inhibition in human cortical neurons while acting as an ER morphoregulator. Improving ER transport visualization methodologies combined with optogenetic Ca2+ dynamics imaging and in silico modeling, we observed that ER luminal transport is modulated by ER tubule narrowing and dilation, proportional to the amount of RTN4. Excess RTN4 limited ER luminal transport and Ca2+ release, while RTN4 elimination reversed the effects. The described morphoregulatory effect of RTN4 defines the capacity of the ER for peripheral Ca2+ delivery for physiological releases and thus may constitute a mechanism for controlling the (re)generation of neurites.
Asunto(s)
Calcio , Retículo Endoplásmico , Neuronas , Proteínas Nogo , Retículo Endoplásmico/metabolismo , Proteínas Nogo/metabolismo , Humanos , Calcio/metabolismo , Neuronas/metabolismo , Neuritas/metabolismo , Transporte Biológico , Proyección Neuronal/efectos de los fármacosRESUMEN
The endoplasmic reticulum (ER) forms an interconnected network of tubules stretching throughout the cell. Understanding how ER functionality relies on its structural organization is crucial for elucidating cellular vulnerability to ER perturbations, which have been implicated in several neuronal pathologies. One of the key functions of the ER is enabling Ca[Formula: see text] signaling by storing large quantities of this ion and releasing it into the cytoplasm in a spatiotemporally controlled manner. Through a combination of physical modeling and live-cell imaging, we demonstrate that alterations in ER shape significantly impact its ability to support efficient local Ca[Formula: see text] releases, due to hindered transport of luminal content within the ER. Our model reveals that rapid Ca[Formula: see text] release necessitates mobile luminal buffer proteins with moderate binding strength, moving through a well-connected network of ER tubules. These findings provide insight into the functional advantages of normal ER architecture, emphasizing its importance as a kinetically efficient intracellular Ca[Formula: see text] delivery system.
Asunto(s)
Retículo Endoplásmico , Transducción de Señal , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Calcio/metabolismo , Señalización del CalcioRESUMEN
BACKGROUND: Helicobacter pylori infection remains a major public health threat leading to gastrointestinal illness and increased risk of gastric cancer. Mostly affecting populations in developing countries no vaccines are yet available and the disease is controlled by antimicrobials which, in turn, are driving the emergence of AMR. MATERIALS AND METHODS: We have engineered spores of Bacillus subtilis to display putative H. pylori protective antigens, urease subunit A (UreA) and subunit B (UreB) on the spore surface. Following oral dosing of mice with these spores, we evaluated immunity and colonization in animals challenged with H. pylori. RESULTS: Oral immunization with spores expressing either UreA or UreB showed antigen-specific mucosal responses (fecal sIgA) including seroconversion and hyperimmunity. Following challenge, colonization by H. pylori was significantly reduced by up to 1-log. CONCLUSIONS: This study demonstrates the utility of bacterial spores for mucosal vaccination to H. pylori infection. The heat stability and robustness of Bacillus spores coupled with their existing use as probiotics make them an attractive solution for either protection against H. pylori infection or potentially for therapy and control of active infection.
Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Infecciones por Helicobacter/prevención & control , Vacunas Bacterianas , Ureasa/genética , Inmunización , Vacunación , Antígenos Bacterianos/genética , Esporas , Ratones Endogámicos BALB C , Anticuerpos AntibacterianosRESUMEN
Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity in vivo we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system. For adjustments of presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and dual oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural changes might be regulated by different ROS sources: changes in bouton number require both NADPH oxidases, while activity-regulated changes in the number of active zones might be modulated by other sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating activity-regulated plasticity adjustments in neurons.
RESUMEN
Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.
RESUMEN
Germination of Bacillus spores is triggered by the interaction of germinant molecules with specialized receptor proteins localized to the spore inner membrane. Germinant receptors (GRs) are comprised typically of three interacting protein subunits, each of which is essential for receptor function. At least some GRs appear to have a fourth component, referred to as a D-subunit protein. A number of D-subunit proteins were shown previously to be capable of modulating the activity of associated GRs. Here, we investigate the topology and structure-function relationships of the Bacillus megaterium QM B1551 GerUD protein, which is associated with the GerU GR. The presented data demonstrate that GerUD can be subjected to relatively extensive structural modifications while retaining function. Indeed, the presence of either of the two transmembrane spanning domains is sufficient to modulate an efficient GerU-mediated germinative response. The precise function of D-subunit proteins has yet to be established, although they may act as molecular chaperones within the spore inner-membrane environment.
Asunto(s)
Bacillus megaterium/química , Bacillus megaterium/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Bacillus megaterium/genética , Bacillus megaterium/ultraestructura , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Mutación , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Esporas Bacterianas/química , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Esporas Bacterianas/fisiología , Relación Estructura-ActividadRESUMEN
Spores of Bacillus megaterium QM B1551 germinate rapidly when exposed to a number of single-trigger germinant compounds, including glucose, proline, leucine, and certain inorganic salts. However, spores of strain PV361, a plasmidless QM B1551 derivative that lacks the GerU germinant receptor (GR) responsible for mediating germination in response to single-trigger compounds, can germinate efficiently when incubated in nutritionally rich media, presumably via activation of additional germinant receptors. In this work, we have identified five chromosomally encoded GRs and attempted to characterize, by mutational analysis, germinant recognition profiles associated with the respective receptors in strain PV361. Of strains engineered with single GR insertion-deletions, only GerK-null spores displayed significant defective germination phenotypes when incubated in 5% (wt/vol) beef extract or plated on rich solid medium. Cumulative decreases in viability were observed in GerK-null spores that also lacked GerA or GerA2, indicating that these GRs, which exerted little effect on spore germination when disrupted individually, have a degree of functionality. Unexpectedly, an efficient germination response to combinations of germinants was restored in GerA(+) spores, which lack all other functional GRs, providing evidence for negative cooperativity between some GRs within the spore. Tetrazolium-based germinative assays conducted with purified spores indicated that these newly characterized B. megaterium GRs are cognate for a wide and chemically diverse range of germinant molecules, but unlike GerU, can only be induced to trigger germination when stimulated by at least two different germinants.
Asunto(s)
Bacillus megaterium/metabolismo , Bacillus megaterium/fisiología , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Esporas Bacterianas/fisiología , Bacillus megaterium/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Esporas Bacterianas/genéticaRESUMEN
While it is known that immunoaffinity depletion of abundant proteins in serum removes additional proteins beyond those targeted, there has been little characterization of the co-depleted proteins in the high abundant fraction, which we refer to here as the "depletome". We present evidence of co-depletion of non-targeted proteins in human serum using a top-20 immunodepletion column, as shown by label-free liquid chromatography mass spectrometry (LC-MS(E)) profiling. This led to identification of 147 proteins which were specific for this fraction and comprised proteins with functions predominantly in binding and transport of nucleotides, metal ions, carbohydrates and lipids. These results suggest that further studies on this commonly ignored serum fraction may provide new insights into clinical proteomics.