Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Med Entomol ; 61(3): 772-780, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412423

RESUMEN

A total of 2,504 ticks of 5 species (Ixodes scapularis, Dermacentor variabilis, Amblyomma americanum, Haemaphysalis leporispalustris, and H. longicornis) were collected over 2 yr (2014-2015) in New York City parks. Specimens were collected via tick-dragging, identified to species, and tested for pathogens of human diseases. The causative agents of 5 human diseases (Lyme borreliosis, ehrlichiosis, babesiosis, anaplasmosis, and Rocky Mountain spotted fever) were detected in a subset of samples. Results of this surveillance effort further illustrate that risk of tick-borne disease is considerable even in parks located adjacent to densely populated areas.


Asunto(s)
Parques Recreativos , Ciudad de Nueva York/epidemiología , Animales , Humanos , Ixodidae/microbiología , Babesiosis/epidemiología , Enfermedad de Lyme/epidemiología , Fiebre Maculosa de las Montañas Rocosas/epidemiología , Fiebre Maculosa de las Montañas Rocosas/transmisión , Anaplasmosis/epidemiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Ehrlichiosis/epidemiología
2.
J Med Entomol ; 61(3): 764-771, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38412407

RESUMEN

Three Asian longhorned ticks (Haemaphysalis longicornis) were collected on Staten Island, Richmond County, New York, in 2014-2015 as part of a tick-borne disease surveillance program conducted by the New York City Department of Health and Mental Hygiene and the Defense Centers of Public Health - Aberdeen Tick-Borne Disease Laboratory. These records mark the earliest known occurrence of H. longicornis in New York State outside of quarantine areas, predating previously reported detections by several years. Robust populations of H. longicornis were collected in subsequent years at the Staten Island site where these few ticks were found, demonstrating that small infestations have the potential to proliferate quickly. Haemaphysalis longicornis is a 3-host ixodid tick native to eastern Asia but now established in the United States, as well as Australasia and several Pacific islands. Although H. longicornis has not yet been associated with human disease transmission in the United States, it warrants attention as a potential vector, as it is demonstrated to harbor various pathogens of medical and veterinary interest across its native and introduced range.


Asunto(s)
Distribución Animal , Ixodidae , Animales , Ixodidae/fisiología , New York , Femenino , Enfermedades por Picaduras de Garrapatas/transmisión , Masculino , Estados Unidos
3.
Trans R Soc Trop Med Hyg ; 117(12): 867-874, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37681342

RESUMEN

BACKGROUND: The objective of this study was to evaluate the spatial and temporal patterns of disease prevalence clusters of dengue (DENV), chikungunya (CHIKV) and Zika (ZIKV) virus and how socio-economic and climatic variables simultaneously influence the risk and rate of occurrence of infection in Mexico. METHODS: To determine the spatiotemporal clustering and the effect of climatic and socio-economic covariates on the rate of occurrence of disease and risk in Mexico, we applied correlation methods, seasonal and trend decomposition using locally estimated scatterplot smoothing, hotspot analysis and conditional autoregressive Bayesian models. RESULTS: We found cases of the disease are decreasing and a significant association between DENV, CHIKV and ZIKV cases and climatic and socio-economic variables. An increment of cases was identified in the northeastern, central west and southeastern regions of Mexico. Climatic and socio-economic covariates were significantly associated with the rate of occurrence and risk of the three arboviral disease cases. CONCLUSION: The association of climatic and socio-economic factors is predominant in the northeastern, central west and southeastern regions of Mexico. DENV, CHIKV and ZIKV cases showed an increased risk in several states in these regions and need urgent attention to allocate public health resources to the most vulnerable regions in Mexico.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Infección por el Virus Zika/epidemiología , Dengue/epidemiología , México/epidemiología , Teorema de Bayes , Fiebre Chikungunya/epidemiología
4.
Opt Lett ; 48(5): 1088-1091, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857220

RESUMEN

Fiber optic bundles are used in narrow-diameter medical and industrial instruments for acquiring images from confined locations. Images transmitted through these bundles contain only one pixel of information per fiber core and fail to capture information from the cladding region between cores. Both factors limit the spatial resolution attainable with fiber bundles. We show here that computational imaging (CI) can be combined with spectral coding to overcome these two fundamental limitations and improve spatial resolution in fiber bundle imaging. By acquiring multiple images of a scene with a high-resolution mask pattern imposed, up to 17 pixels of information can be recovered from each fiber core. A dispersive element at the distal end of the bundle imparts a wavelength-dependent lateral shift on light from the object. This enables light that would otherwise be lost at the inter-fiber cladding to be transmitted through adjacent fiber cores. We experimentally demonstrate this approach using synthetic and real objects. Using CI with spectral coding, object features 5× smaller than individual fiber cores were resolved, whereas conventional imaging could only resolve features at least 1.5× larger than each core. In summary, CI combined with spectral coding provides an approach for overcoming the two fundamental limitations of fiber optic bundle imaging.

5.
Front Artif Intell ; 5: 832909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757296

RESUMEN

This work proposes a domain-informed neural network architecture for experimental particle physics, using particle interaction localization with the time-projection chamber (TPC) technology for dark matter research as an example application. A key feature of the signals generated within the TPC is that they allow localization of particle interactions through a process called reconstruction (i.e., inverse-problem regression). While multilayer perceptrons (MLPs) have emerged as a leading contender for reconstruction in TPCs, such a black-box approach does not reflect prior knowledge of the underlying scientific processes. This paper looks anew at neural network-based interaction localization and encodes prior detector knowledge, in terms of both signal characteristics and detector geometry, into the feature encoding and the output layers of a multilayer (deep) neural network. The resulting neural network, termed Domain-informed Neural Network (DiNN), limits the receptive fields of the neurons in the initial feature encoding layers in order to account for the spatially localized nature of the signals produced within the TPC. This aspect of the DiNN, which has similarities with the emerging area of graph neural networks in that the neurons in the initial layers only connect to a handful of neurons in their succeeding layer, significantly reduces the number of parameters in the network in comparison to an MLP. In addition, in order to account for the detector geometry, the output layers of the network are modified using two geometric transformations to ensure the DiNN produces localizations within the interior of the detector. The end result is a neural network architecture that has 60% fewer parameters than an MLP, but that still achieves similar localization performance and provides a path to future architectural developments with improved performance because of their ability to encode additional domain knowledge into the architecture.

6.
J Med Entomol ; 59(4): 1434-1442, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35639921

RESUMEN

We report the multi-year collection of the Gulf Coast tick, Amblyomma maculatum Koch (Acaridae: Ixodida: Ixodidae) in Staten Island, New York City (NYC) as well as their detection in Brooklyn, NYC, and in Atlantic and Cumberland counties in southern New Jersey, USA. The first and most common detections were of adults, however in Freshkills Park on Staten Island larvae were also collected in a following year. The presence of larvae indicates that adults are successfully finding hosts in Staten Island. While it is still unknown how A. americanum reached Staten Island, immatures of this species often parasitize migratory birds, which are now often seen in Freshkills Park. We describe the landscape features of the area in Staten Island where populations were highest and larvae were detected, which could have facilitated the establishment of A. maculatum. Notably, we also report the presence of human pathogens Rickettsia parkeri in 5/10 (50%) of adults tested and R. felis in 1/24 (4.17%) of larvae tested. In addition to established populations in Staten Island we found evidence of A. maculatum in NJ and other NYC boroughs, suggesting current or future establishment is possible. The failure thus far to detect established populations in these areas may be due to inherent difficulties in detecting low density, spatially heterogeneous incipient populations, which could require targeted surveillance efforts for this species. We discuss the consequences to public health of the establishment of A. maculatum and detection of two additional rickettsial pathogens in the densely populated northeastern United States.


Asunto(s)
Ixodidae , Rickettsia , Rickettsiosis Exantemáticas , Garrapatas , Amblyomma , Animales , Humanos , Ixodidae/microbiología , Larva/microbiología , New England
7.
Zoonoses Public Health ; 67(6): 637-650, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32638553

RESUMEN

Established populations of Asian longhorned ticks (ALT), Haemaphysalis longicornis, were first identified in the United States (US) in 2017 by sequencing the mitochondrial cytochrome c oxidase subunit I (cox1) 'barcoding' locus followed by morphological confirmation. Subsequent investigations detected ALT infestations in 12, mostly eastern, US states. To gain information on the origin and spread of US ALT, we (1) sequenced cox1 from ALT populations across 9 US states and (2) obtained cox1 sequences from potential source populations [China, Japan and Republic of Korea (ROK) as well as Australia, New Zealand and the Kingdom of Tonga (KOT)] both by sequencing and by downloading publicly available sequences in NCBI GenBank. Additionally, we conducted epidemiological investigations of properties near its initial detection locale in Hunterdon County, NJ, as well as a broader risk analysis for importation of ectoparasites into the area. In eastern Asian populations (China/Japan/ROK), we detected 35 cox1 haplotypes that neatly clustered into two clades with known bisexual versus parthenogenetic phenotypes. In Australia/New Zealand/KOT, we detected 10 cox1 haplotypes all falling within the parthenogenetic cluster. In the United States, we detected three differentially distributed cox1 haplotypes from the parthenogenetic cluster, supporting phenotypic evidence that US ALT are parthenogenetic. While none of the source populations examined had all three US cox1 haplotypes, a phylogeographic network analysis supports a northeast Asian source for the US populations. Within the United States, epidemiological investigations indicate ALT can be moved long distances by human transport of animals, such as horses and dogs, with smaller scale movements on wildlife. These results have relevant implications for efforts aimed at minimizing the spread of ALT in the United States and preventing additional exotic tick introductions.


Asunto(s)
Distribución Animal , Ixodidae/fisiología , Animales , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Regulación Enzimológica de la Expresión Génica , Estados Unidos
8.
Viruses ; 12(7)2020 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-32605312

RESUMEN

In an increasingly interconnected world, the exposure and subsequent spread of emergent viruses has become inevitable. This is particularly true for Aedes (Ae.) mosquito-vectored viruses, whose range has increased over the past decade from tropical to temperate regions. However, it is unclear if all populations of Ae. mosquitoes in temperate New York City are able to successfully replicate and transmit arboviruses. To answer this question, we reared Ae. albopictus mosquitoes living in a temperate climate from three locations in New York City. We first sequenced the salivary antiviral protein D7 from individual mosquitoes in each population and found single nucleotide variants that are both shared and unique for each Ae. albopictus population. We then fed each population chikungunya virus (CHIKV) via an artificial blood meal. All three mosquito populations could be infected with CHIKV, yet viral titers differed between populations at 7 days post infection. Moreover, we found that these mosquitoes could transmit CHIKV to mice, and that virus RNA reached the saliva as early as two days post infection. Upon sequencing of the saliva CHIKV genomic RNA, we found mutations at sites correlated with increased transmission and virulence. These studies show that NYC Ae. albopictus populations can be infected with and transmit CHIKV, CHIKV is able to evolve in these mosquitoes, and that host salivary factors display population-specific diversity. Taken together, these studies highlight the need to study how distinct mosquito populations control viral infections, both at the virus and host level.


Asunto(s)
Aedes/virología , Fiebre Chikungunya/transmisión , Virus Chikungunya/fisiología , Proteínas de Insectos/metabolismo , Mosquitos Vectores/virología , Proteínas y Péptidos Salivales/metabolismo , Animales , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Femenino , Humanos , Proteínas de Insectos/genética , Masculino , Ratones Endogámicos C57BL , Mosquitos Vectores/genética , Mosquitos Vectores/metabolismo , Ciudad de Nueva York , Proteínas y Péptidos Salivales/genética , Especificidad de la Especie , Replicación Viral
9.
Am J Trop Med Hyg ; 102(2): 436-447, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31833467

RESUMEN

Aedes albopictus is a vector of arboviruses with high rates of morbidity and mortality. The northern limit of Ae. albopictus in the northeastern United States runs through New York state (NYS) and Connecticut. We present a landscape-level analysis of mosquito abundance measured by daily counts of Ae. albopictus from 338 trap sites in 12 counties during May-September 2017. During the study period, the mean number of Ae. albopictus caught per day of trapping across all sites was 3.21. We constructed four sets of negative binomial generalized linear models to evaluate how trapping methodology, land cover, as well as temperature and precipitation at multiple time intervals influenced Ae. albopictus abundance. Biogents-Sentinel (BGS) traps were 2.78 times as efficient as gravid traps and 1.49 times as efficient as CO2-baited CDC light traps. Greater proportions of low- and medium-intensity development and low proportions of deciduous cover around the trap site were positively associated with increased abundance, as were minimum winter temperature and March precipitation. The cumulative precipitation within a 28-day time window before the date of collection had a nonlinear relationship with abundance, such that greater cumulative precipitation was associated with increased abundance until approximately 70 mm, above which there was a decrease in abundance. We concluded that populations are established in Nassau, Suffolk, and New York City counties in NYS; north of these counties, the species is undergoing population invasion and establishment. We recommend that mosquito surveillance programs monitoring the northward invasion of Ae. albopictus place BGS traps at sites chosen with respect to land cover.


Asunto(s)
Aedes/fisiología , Distribución Animal , Ambiente , Adaptación Fisiológica , Animales , Connecticut , Bases de Datos Factuales , New York , Densidad de Población
10.
Opt Lett ; 44(16): 3968-3971, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31415524

RESUMEN

This Letter presents a framework for computational imaging (CI) in fiber-bundle-based endoscopy systems. Multiple observations are acquired of objects spatially modulated with different random binary masks. Sparse-recovery algorithms then reconstruct images with more resolved pixels than individual fibers in the bundle. Object details lying within the diameter of single fibers are resolved, allowing images with 41,663 resolvable points to be generated through a bundle with 2,420 fibers. Computational fiber bundle imaging of micro- and macro-scale objects is demonstrated using fluorescent standards and biological tissues, including in vivo imaging of a human fingertip. In each case, CI recovers details that conventional endoscopy does not provide.

11.
Emerg Infect Dis ; 25(6): 1136-1143, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31107213

RESUMEN

Most tickborne disease studies in the United States are conducted in low-intensity residential development and forested areas, leaving much unknown about urban infection risks. To understand Lyme disease risk in New York, New York, USA, we conducted tick surveys in 24 parks throughout all 5 boroughs and assessed how park connectivity and landscape composition contribute to Ixodes scapularis tick nymphal densities and Borrelia burgdorferi infection. We used circuit theory models to determine how parks differentially maintain landscape connectivity for white-tailed deer, the reproductive host for I. scapularis ticks. We found forested parks with vegetated buffers and increased connectivity had higher nymph densities, and the degree of park connectivity strongly determined B. burgdorferi nymphal infection prevalence. Our study challenges the perspective that tickborne disease risk is restricted to suburban and natural settings and emphasizes the need to understand how green space design affects vector and host communities in areas of emerging urban tickborne disease.


Asunto(s)
Distribución Animal , Borrelia burgdorferi/aislamiento & purificación , Ixodes/microbiología , Enfermedad de Lyme/epidemiología , Parques Recreativos , Animales , Ecosistema , Humanos , Ixodes/fisiología , Enfermedad de Lyme/transmisión , Ciudad de Nueva York/epidemiología , Ninfa/microbiología , Ninfa/fisiología , Factores de Riesgo
12.
MMWR Morb Mortal Wkly Rep ; 67(47): 1310-1313, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30496158

RESUMEN

Haemaphysalis longicornis is a tick indigenous to eastern Asia and an important vector of human and animal disease agents, resulting in such outcomes as human hemorrhagic fever and reduction of production in dairy cattle by 25%. H. longicornis was discovered on a sheep in New Jersey in August 2017 (1). This was the first detection in the United States outside of quarantine. In the spring of 2018, the tick was again detected at the index site, and later, in other counties in New Jersey, in seven other states in the eastern United States, and in Arkansas. The hosts included six species of domestic animals, six species of wildlife, and humans. To forestall adverse consequences in humans, pets, livestock, and wildlife, several critical actions are indicated, including expanded surveillance to determine the evolving distribution of H. longicornis, detection of pathogens that H. longicornis currently harbors, determination of the capacity of H. longicornis to serve as a vector for a range of potential pathogens, and evaluation of effective agents and methods for the control of H. longicornis.


Asunto(s)
Ixodidae , Infestaciones por Garrapatas/epidemiología , Infestaciones por Garrapatas/parasitología , Animales , Vectores de Enfermedades , Humanos , Infestaciones por Garrapatas/veterinaria , Estados Unidos/epidemiología
13.
J Am Mosq Control Assoc ; 34(2): 138-142, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-31442160

RESUMEN

This is the 1st time that a comprehensive checklist of the mosquitoes of New York City has been compiled. This list is based on an arrayed collection of 2.3 million mosquitoes trapped and identified from 1,369 locations in the city between 2000 and 2017. Forty-seven species and 6 subspecies were identified belonging to 9 mosquito genera. Culex pipiens was the most prevalent species, most frequently encountered throughout the city. Over time, species diversity in the genus Aedes has increased from 10 species in the 1930s to 23 species in the recent surveys (2000-17). Invasive species Aedes albopictus and Ae. japonicus japonicus, which were rare in 2000, are now well established in all 5 boroughs of the city.


Asunto(s)
Distribución Animal , Culicidae/clasificación , Especies Introducidas , Aedes , Animales , Culex , Ciudad de Nueva York , Densidad de Población
14.
PLoS Negl Trop Dis ; 11(8): e0005828, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28832586

RESUMEN

Ae. albopictus, an invasive mosquito vector now endemic to much of the northeastern US, is a significant public health threat both as a nuisance biter and vector of disease (e.g. chikungunya virus). Here, we aim to quantify the relationships between local environmental and meteorological conditions and the abundance of Ae. albopictus mosquitoes in New York City. Using statistical modeling, we create a fine-scale spatially explicit risk map of Ae. albopictus abundance and validate the accuracy of spatiotemporal model predictions using observational data from 2016. We find that the spatial variability of annual Ae. albopictus abundance is greater than its temporal variability in New York City but that both local environmental and meteorological conditions are associated with Ae. albopictus numbers. Specifically, key land use characteristics, including open spaces, residential areas, and vacant lots, and spring and early summer meteorological conditions are associated with annual Ae. albopictus abundance. In addition, we investigate the distribution of imported chikungunya cases during 2014 and use these data to delineate areas with the highest rates of arboviral importation. We show that the spatial distribution of imported arboviral cases has been mostly discordant with mosquito production and thus, to date, has provided a check on local arboviral transmission in New York City. We do, however, find concordant areas where high Ae. albopictus abundance and chikungunya importation co-occur. Public health and vector control officials should prioritize control efforts to these areas and thus more cost effectively reduce the risk of local arboviral transmission. The methods applied here can be used to monitor and identify areas of risk for other imported vector-borne diseases.


Asunto(s)
Aedes/virología , Infecciones por Arbovirus/transmisión , Arbovirus/aislamiento & purificación , Mosquitos Vectores/virología , Tiempo (Meteorología) , Aedes/clasificación , Aedes/fisiología , Animales , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/virología , Arbovirus/fisiología , Fiebre Chikungunya/transmisión , Fiebre Chikungunya/virología , Ambiente , Mosquitos Vectores/fisiología , Ciudad de Nueva York/epidemiología , Salud Pública , Factores de Riesgo , Estaciones del Año
15.
MMWR Morb Mortal Wkly Rep ; 65(24): 629-635, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27337505

RESUMEN

Zika virus has rapidly spread through the World Health Organization's Region of the Americas since being identified in Brazil in early 2015. Transmitted primarily through the bite of infected Aedes species mosquitoes, Zika virus infection during pregnancy can cause spontaneous abortion and birth defects, including microcephaly (1,2). New York City (NYC) is home to a large number of persons who travel frequently to areas with active Zika virus transmission, including immigrants from these areas. In November 2015, the NYC Department of Health and Mental Hygiene (DOHMH) began developing and implementing plans for managing Zika virus and on February 1, 2016, activated its Incident Command System. During January 1-June 17, 2016, DOHMH coordinated diagnostic laboratory testing for 3,605 persons with travel-associated exposure, 182 (5.0%) of whom had confirmed Zika virus infection. Twenty (11.0%) confirmed patients were pregnant at the time of diagnosis. In addition, two cases of Zika virus-associated Guillain-Barré syndrome were diagnosed. DOHMH's response has focused on 1) identifying and diagnosing suspected cases; 2) educating the public and medical providers about Zika virus risks, transmission, and prevention strategies, particularly in areas with large populations of immigrants from areas with ongoing Zika virus transmission; 3) monitoring pregnant women with Zika virus infection and their fetuses and infants; 4) detecting local mosquito-borne transmission through both human and mosquito surveillance; and 5) modifying existing Culex mosquito control measures by targeting Aedes species of mosquitoes through the use of larvicides and adulticides.

16.
Opt Express ; 24(6): 6145-55, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27136808

RESUMEN

This paper investigates a highly parallel extension of the single-pixel camera based on a focal plane array. It discusses the practical challenges that arise when implementing such an architecture and demonstrates that system-specific optical effects must be measured and integrated within the system model for accurate image reconstruction. Three different projection lenses were used to evaluate the ability of the system to accommodate varying degrees of optical imperfection. Reconstruction of binary and grayscale objects using system-specific models and Nesterov's proximal gradient method produced images with higher spatial resolution and lower reconstruction error than using either bicubic interpolation or a theoretical system model that assumes ideal optical behavior. The high-quality images produced using relatively few observations suggest that higher throughput imaging may be achieved with such architectures than with conventional single-pixel cameras. The optical design considerations and quantitative performance metrics proposed here may lead to improved image reconstruction for similar highly parallel systems.

17.
Infect Control Hosp Epidemiol ; 37(1): 113-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26498730

RESUMEN

A patient with no risk factors for malaria was hospitalized in New York City with Plasmodium falciparum infection. After investigating all potential sources of infection, we concluded the patient had been exposed to malaria while hospitalized less than 3 weeks earlier. Molecular genotyping implicated patient-to-patient transmission in a hospital setting. Infect. Control Hosp. Epidemiol. 2015;37(1):113-115.


Asunto(s)
Infección Hospitalaria/transmisión , Malaria Falciparum/transmisión , Plasmodium falciparum , Adulto , Infección Hospitalaria/epidemiología , Infección Hospitalaria/parasitología , Femenino , Humanos , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Ciudad de Nueva York/epidemiología , Plasmodium falciparum/genética
18.
Case Rep Psychiatry ; 2015: 423025, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789191

RESUMEN

Catatonia, while not a rare occurrence in bipolar disorder, has not been widely discussed in the literature. We present a case of a married Caucasian male with a history of bipolar disorder, exhibiting catatonia and experiencing difficulty in day-to-day functioning. He demonstrated impairment in cognition and an inability to organize simple activities of daily life. After exhausting a number of options for medical management, including benzodiazepines, atypical antipsychotics, and amantadine, he only displayed significant clinical improvement with the addition of a stimulant, methylphenidate. In time, the patient saw a complete return to normal functioning. The use of stimulants for catatonia in bipolar disorder may be an interesting and effective option for treatment. While this is not the first time this treatment has been suggested, there is very little data in support of it; our case confirms the discoveries of previous case reports.

20.
PLoS Comput Biol ; 7(7): e1002104, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21829332

RESUMEN

Vector-borne diseases are emerging and re-emerging in urban environments throughout the world, presenting an increasing challenge to human health and a major obstacle to development. Currently, more than half of the global population is concentrated in urban environments, which are highly heterogeneous in the extent, degree, and distribution of environmental modifications. Because the prevalence of vector-borne pathogens is so closely coupled to the ecologies of vector and host species, this heterogeneity has the potential to significantly alter the dynamical systems through which pathogens propagate, and also thereby affect the epidemiological patterns of disease at multiple spatial scales. One such pattern is the speed of spread. Whereas standard models hold that pathogens spread as waves with constant or increasing speed, we hypothesized that heterogeneity in urban environments would cause decelerating travelling waves in incipient epidemics. To test this hypothesis, we analysed data on the spread of West Nile virus (WNV) in New York City (NYC), the 1999 epicentre of the North American pandemic, during annual epizootics from 2000-2008. These data show evidence of deceleration in all years studied, consistent with our hypothesis. To further explain these patterns, we developed a spatial model for vector-borne disease transmission in a heterogeneous environment. An emergent property of this model is that deceleration occurs only in the vicinity of a critical point. Geostatistical analysis suggests that NYC may be on the edge of this criticality. Together, these analyses provide the first evidence for the endogenous generation of decelerating travelling waves in an emerging infectious disease. Since the reported deceleration results from the heterogeneity of the environment through which the pathogen percolates, our findings suggest that targeting control at key sites could efficiently prevent pathogen spread to remote susceptible areas or even halt epidemics.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Brotes de Enfermedades , Salud Urbana , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental , Animales , Aves/virología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/prevención & control , Enfermedades Transmisibles Emergentes/transmisión , Biología Computacional , Bases de Datos Factuales , Humanos , Modelos Biológicos , Ciudad de Nueva York/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA