Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Exp Med ; 212(10): 1725-38, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26324446

RESUMEN

The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1(-/-) mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1(-/-) macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1(-/-) macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1(-/-) cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response.


Asunto(s)
FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Citocinas/metabolismo , Humanos , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Sepsis/genética , Sepsis/mortalidad , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Receptor Toll-Like 4/metabolismo
2.
PLoS One ; 9(8): e104101, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25158065

RESUMEN

Nitrate tolerance developed after persistent nitroglycerin (GTN) exposure limits its clinical utility. Previously, we have shown that the vasodilatory action of GTN is dependent on endothelial nitric oxide synthase (eNOS/NOS3) activity. Caveolin-1 (Cav-1) is known to interact with NOS3 on the cytoplasmic side of cholesterol-enriched plasma membrane microdomains (caveolae) and to inhibit NOS3 activity. Loss of Cav-1 expression results in NOS3 hyperactivation and uncoupling, converting NOS3 into a source of superoxide radicals, peroxynitrite, and oxidative stress. Therefore, we hypothesized that nitrate tolerance induced by persistent GTN treatment results from NOS3 dysfunction and vascular toxicity. Exposure to GTN for 48-72 h resulted in nitrosation and depletion (>50%) of Cav-1, NOS3 uncoupling as measured by an increase in peroxynitrite production (>100%), and endothelial toxicity in cultured cells. In the Cav-1 deficient mice, NOS3 dysfunction was accompanied by GTN tolerance (>50% dilation inhibition at low GTN concentrations). In conclusion, GTN tolerance results from Cav-1 modification and depletion by GTN that causes persistent NOS3 activation and uncoupling, preventing it from participating in GTN-medicated vasodilation.


Asunto(s)
Caveolina 1/genética , Tolerancia a Medicamentos , Nitroglicerina/farmacología , Vasodilatadores/farmacología , Animales , Caveolina 1/metabolismo , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Proteolisis/efectos de los fármacos
3.
Circ Arrhythm Electrophysiol ; 7(4): 701-10, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25017399

RESUMEN

BACKGROUND: Genome-wide association studies have revealed significant association of caveolin-1 (Cav1) gene variants with increased risk of cardiac arrhythmias. Nevertheless, the mechanism for this linkage is unclear. METHODS AND RESULTS: Using adult Cav1(-/-) mice, we revealed a marked reduction in the left ventricular conduction velocity in the absence of myocardial Cav1, which is accompanied with increased inducibility of ventricular arrhythmias. Further studies demonstrated that loss of Cav1 leads to the activation of cSrc tyrosine kinase, resulting in the downregulation of connexin 43 and subsequent electric abnormalities. Pharmacological inhibition of cSrc mitigates connexin 43 downregulation, slowed conduction, and arrhythmia inducibility in Cav1(-/-) animals. Using a transgenic mouse model with cardiac-specific overexpression of angiotensin-converting enzyme (ACE8/8), we demonstrated that, on enhanced cardiac renin-angiotensin system activity, Cav1 dissociated from cSrc because of increased Cav1 S-nitrosation at Cys(156), leading to cSrc activation, connexin 43 reduction, impaired gap junction function, and subsequent increase in the propensity for ventricular arrhythmias and sudden cardiac death. Renin-angiotensin system-induced Cav1 S-nitrosation was associated with increased Cav1-endothelial nitric oxide synthase binding in response to increased mitochondrial reactive oxidative species generation. CONCLUSIONS: The present studies reveal the critical role of Cav1 in modulating cSrc activation, gap junction remodeling, and ventricular arrhythmias. These data provide a mechanistic explanation for the observed genetic link between Cav1 and cardiac arrhythmias in humans and suggest that targeted regulation of Cav1 may reduce arrhythmic risk in cardiac diseases associated with renin-angiotensin system activation.


Asunto(s)
Arritmias Cardíacas/enzimología , Caveolina 1/metabolismo , Uniones Comunicantes/enzimología , Miocitos Cardíacos/enzimología , Familia-src Quinasas/metabolismo , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Proteína Tirosina Quinasa CSK , Caveolina 1/deficiencia , Caveolina 1/genética , Conexina 43/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática , Uniones Comunicantes/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias Cardíacas/enzimología , Miocitos Cardíacos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitrosación , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Sistema Renina-Angiotensina , Transducción de Señal , Familia-src Quinasas/antagonistas & inhibidores
4.
Anesthesiology ; 120(6): 1414-28, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24525631

RESUMEN

BACKGROUND: Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. METHODS: Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. RESULTS: Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. CONCLUSIONS: Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.


Asunto(s)
Amidas/farmacología , Anestésicos Locales/farmacología , Endotelio Vascular/efectos de los fármacos , Lidocaína/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Pulmón/efectos de los fármacos , Pulmón/enzimología , Microcirculación/efectos de los fármacos , Microcirculación/fisiología , Ropivacaína , Factor de Necrosis Tumoral alfa/administración & dosificación , Familia-src Quinasas/fisiología
5.
Blood ; 123(3): 442-50, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24081657

RESUMEN

von Willebrand factor (vWF) secretion by endothelial cells (ECs) is essential for hemostasis and thrombosis; however, the molecular mechanisms are poorly understood. Interestingly, we observed increased bleeding in EC-Gα13(-/-);Gα12(-/-) mice that could be normalized by infusion of human vWF. Blood from Gα12(-/-) mice exhibited significantly reduced vWF levels but normal vWF multimers and impaired laser-induced thrombus formation, indicating that Gα12 plays a prominent role in EC vWF secretion required for hemostasis and thrombosis. In isolated buffer-perfused mouse lungs, basal vWF levels were significantly reduced in Gα12(-/-), whereas thrombin-induced vWF secretion was defective in both EC-Gαq(-/-);Gα11(-/-) and Gα12(-/-) mice. Using siRNA in cultured human umbilical vein ECs and human pulmonary artery ECs, depletion of Gα12 and soluble N-ethylmaleimide-sensitive-fusion factor attachment protein α (α-SNAP), but not Gα13, inhibited both basal and thrombin-induced vWF secretion, whereas overexpression of activated Gα12 promoted vWF secretion. In Gαq, p115 RhoGEF, and RhoA-depleted human umbilical vein ECs, thrombin-induced vWF secretion was reduced by 40%, whereas basal secretion was unchanged. Finally, in vitro binding assays revealed that Gα12 N-terminal residues 10-15 mediated the binding of Gα12 to α-SNAP, and an engineered α-SNAP binding-domain minigene peptide blocked basal and evoked vWF secretion. Discovery of obligatory and complementary roles of Gα12 and Gαq/11 in basal vs evoked EC vWF secretion may provide promising new therapeutic strategies for treatment of thrombotic disease.


Asunto(s)
Células Endoteliales/citología , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factor de von Willebrand/metabolismo , Animales , Anticuerpos Monoclonales/química , Regulación de la Expresión Génica , Hemostasis , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Noqueados , Adhesividad Plaquetaria , Unión Proteica , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/química , Trombosis
6.
Pulm Circ ; 3(4): 816-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25006397

RESUMEN

In the present study, we tested the hypothesis that chronic inflammation and oxidative/nitrosative stress induce caveolin 1 (Cav-1) degradation, providing an underlying mechanism of endothelial cell activation/dysfunction and pulmonary vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). We observed reduced Cav-1 protein despite increased Cav-1 messenger RNA expression and also endothelial nitric oxide synthase (eNOS) hyperphosphorylation in human pulmonary artery endothelial cells (PAECs) from patients with IPAH. In control human lung endothelial cell cultures, tumor necrosis factor α-induced nitric oxide (NO) production and S-nitrosation (SNO) of Cav-1 Cys-156 were associated with Src displacement and activation, Cav-1 Tyr-14 phosphorylation, and destabilization of Cav-1 oligomers within 5 minutes that could be blocked by eNOS or Src inhibition. Prolonged stimulation (72 hours) with NO donor DETANONOate reduced oligomerized and total Cav-1 levels by 40%-80%, similar to that observed in IPAH patient-derived PAECs. NO donor stimulation of endothelial cells for >72 hours, which was associated with sustained Src activation and Cav-1 phosphorylation, ubiquitination, and degradation, was blocked by NOS inhibitor L-NAME, Src inhibitor PP2, and proteosomal inhibitor MG132. Thus, chronic inflammation, sustained eNOS and Src signaling, and Cav-1 degradation may be important causal factors in the development of IPAH by promoting PAEC dysfunction/activation via sustained oxidative/nitrosative stress.

7.
Mol Biol Cell ; 23(7): 1388-98, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22323292

RESUMEN

Endothelial nitric oxide synthase (eNOS)-mediated NO production plays a critical role in the regulation of vascular function and pathophysiology. Caveolin-1 (Cav-1) binding to eNOS holds eNOS in an inactive conformation; however, the mechanism of Cav-1-mediated inhibition of activated eNOS is unclear. Here the role of Src-dependent Cav-1 phosphorylation in eNOS negative feedback regulation is investigated. Using fluorescence resonance energy transfer (FRET) and coimmunoprecipitation analyses, we observed increased interaction between eNOS and Cav-1 following stimulation of endothelial cells with thrombin, vascular endothelial growth factor, and Ca(2+) ionophore A23187, which is corroborated in isolated perfused mouse lung. The eNOS/Cav-1 interaction is blocked by eNOS inhibitor L-N(G)-nitroarginine methyl ester (hydrochloride) and Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3, 4-d] pyrimidine. We also observe increased binding of phosphomimicking Y14D-Cav-1 mutant transduced in human embryonic kidney cells overexpressing eNOS and reduced Ca(2+)-induced NO production compared to cells expressing the phosphodefective Y14F-Cav-1 mutant. Finally, Src FRET biosensor, eNOS small interfering RNA, and NO donor studies demonstrate NO-induced Src activation and Cav-1 phosphorylation at Tyr-14, resulting in increased eNOS/Cav-1 interaction and inhibition of eNOS activity. Taken together, these data suggest that activation of eNOS promotes Src-dependent Cav-1-Tyr-14 phosphorylation and eNOS/Cav-1 binding, that is, eNOS feedback inhibition.


Asunto(s)
Caveolina 1/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Familia-src Quinasas/metabolismo , Animales , Secuencia de Bases , Células CHO , Calcimicina/farmacología , Caveolina 1/genética , Células Cultivadas , Cricetinae , Cricetulus , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Retroalimentación Fisiológica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Cinética , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Unión Proteica , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Familia-src Quinasas/antagonistas & inhibidores
8.
Mol Pharmacol ; 80(4): 665-72, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21778303

RESUMEN

In the present study, we assessed the cooperative roles of C-terminal Src kinase (Csk) binding protein (Cbp) and Caveolin-1 (Cav-1) in the mechanism of Src family tyrosine kinase (SFK) inhibition by Csk. SFKs are inactivated by phosphorylation of their C-terminal tyrosine by Csk. Whereas SFKs are membrane-associated, Csk is a cytoplasmic protein and therefore requires membrane adaptors such as Cbp or Cav-1 for recruitment to the plasma membrane to mediate SFK inhibition. To determine the specific role of Cav-1 and Cbp in SFK inhibition, we measured c-Src activity in the absence of each membrane adaptor. It is noteworthy that in lungs and fibroblasts from Cav-1(-/-) mice, we observed increased expression of Cbp compared with wild-type (WT) controls. However, both c-Src activity and Csk localization at the membrane were similar between Cav-1(-/-) fibroblasts and WT cells. Likewise, Cbp depletion by small interfering RNA (siRNA) treatment of WT cells had no effect on basal c-Src activity, but it increased the phosphorylation state of Cav-1. Immunoprecipitation then confirmed increased association of Csk with phosphomimicking Cav-1. Knockdown of Cbp by siRNA in Cav-1(-/-) cells revealed increased basal c-Src activity, and re-expression of WT Cav-1 in the same cells reduced basal c-Src activity. Taken together, these results indicate that Cav-1 and Cbp cooperatively regulate c-Src activity by recruiting Csk to the membrane where it phosphorylates c-Src inhibitory tyrosine 529. Furthermore, when either Cav-1 or Cbp expression is reduced or absent, there is a compensatory increase in the phosphorylation state or expression level of the other membrane-associated Csk adaptor to maintain SFK inhibition.


Asunto(s)
Proteínas Portadoras/fisiología , Caveolina 1/fisiología , Proteínas Tirosina Quinasas/fisiología , Dominios Homologos src/fisiología , Animales , Proteína Tirosina Quinasa CSK , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/fisiología , Unión Proteica/fisiología , Familia-src Quinasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA