Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Inorg Chem ; 63(26): 12323-12332, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38872340

RESUMEN

The choice of correct pH buffer is crucial in chemical studies modeling biological processes involving Cu2+ ions. Popular buffers for physiological pH are known to form Cu(II) complexes, but their impact on kinetics of Cu(II) complexation has not been considered. We performed a stopped-flow kinetic study of Cu2+ ion interactions with four popular buffers (phosphate, Tris, HEPES, and MOPS) and two buffers considered as nonbinding (MES and PIPPS). Next, we studied their effects on the rate of Cu2+ reaction with Gly-Gly-His (GGH), a tripeptide modeling physiological Cu(II) sites, which we studied previously at conditions presumably excluding the buffer interference [Kotuniak, R.; Angew. Chem., Int. Ed. 2020, 59, 11234-11239]. We observed that (i) all tested pH 7.4 buffers formed Cu(II) complexes within the stopped-flow instrument dead time; (ii) Cu(II)-peptide complexes were formed via ternary complexes with the buffers; (iii) nevertheless, Good buffers affected the observed rate of Cu(II)-GGH complex formation only slightly; (iv) Tris was a competitive inhibitor of Cu(II)-GGH complexation; while (v) phosphate was a reaction catalyst. This is particularly important as phosphate is a biological buffer.


Asunto(s)
Cobre , Cobre/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Cinética , Complejos de Coordinación/química , Péptidos/química , Oligopéptidos/química , Iones/química
2.
Inorg Chem ; 63(26): 12268-12280, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38877980

RESUMEN

His-Leu is a hydrolytic byproduct of angiotensin metabolism, whose concentration in the bloodstream could be at least micromolar. This encouraged us to investigate its Cu(II) binding properties and the concomitant redox reactivity. The Cu(II) binding constants were derived from isothermal titration calorimetry and potentiometry, while identities and structures of complexes were obtained from ultraviolet-visible, circular dichroism, and room-temperature electronic paramagnetic resonance spectroscopies. Four types of Cu(II)/His-Leu complexes were detected. The histamine-like complexes prevail at low pH. At neutral and mildly alkaline pH and low Cu(II):His-Leu ratios, they are superseded by diglycine-like complexes involving the deprotonated peptide nitrogen. At His-Leu:Cu(II) ratios of ≥2, bis-complexes are formed instead. Above pH 10.5, a diglycine-like complex containing the equatorially coordinated hydroxyl group predominates at all ratios tested. Cu(II)/His-Leu complexes are also strongly redox active, as demonstrated by voltammetric studies and the ascorbate oxidation assay. Finally, numeric competition simulations with human serum albumin, glycyl-histydyl-lysine, and histidine revealed that His-Leu might be a part of the low-molecular weight Cu(II) pool in blood if its abundance is >10 µM. These results yield further questions, such as the biological relevance of ternary complexes containing His-Leu.


Asunto(s)
Quelantes , Complejos de Coordinación , Cobre , Oxidación-Reducción , Cobre/química , Humanos , Quelantes/química , Quelantes/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Oligopéptidos/química , Angiotensinas/química , Angiotensinas/metabolismo , Concentración de Iones de Hidrógeno , Histidina/química , Estructura Molecular
3.
FEBS J ; 291(9): 1974-1991, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38349797

RESUMEN

Human cystatin C (hCC), a small secretory protein, has gained attention beyond its classical role as a cysteine protease inhibitor owing to its potential involvement in neurodegenerative disorders. This study investigates the interaction between copper(II) ions [Cu(II)] and hCC, specifically targeting histidine residues known to participate in metal binding. Through various analytical techniques, including mutagenesis, circular dichroism, fluorescence assays, gel filtration chromatography, and electron microscopy, we evaluated the impact of Cu(II) ions on the structure and oligomerization of hCC. The results show that Cu(II) does not influence the secondary and tertiary structure of the studied hCC variants but affects their stability. To explore the Cu(II)-binding site, nuclear magnetic resonance (NMR) and X-ray studies were conducted. NMR experiments revealed notable changes in signal intensities and linewidths within the region 86His-Asp-Gln-Pro-His90, suggesting its involvement in Cu(II) coordination. Both histidine residues from this fragment were found to serve as a primary anchor of Cu(II) in solution, depending on the structural context and the presence of other Cu(II)-binding agents. The presence of Cu(II) led to significant destabilization and altered thermal stability of the wild-type and H90A variant, confirming differentiation between His residues in Cu(II) binding. In conclusion, this study provides valuable insights into the interaction between Cu(II) and hCC, elucidating the impact of copper ions on protein stability and identifying potential Cu(II)-binding residues. Understanding these interactions enhances our knowledge of the role of copper in neurodegenerative disorders and may facilitate the development of therapeutic strategies targeting copper-mediated processes in protein aggregation and associated pathologies.


Asunto(s)
Cobre , Cistatina C , Unión Proteica , Multimerización de Proteína , Cobre/metabolismo , Cobre/química , Humanos , Cistatina C/química , Cistatina C/metabolismo , Cistatina C/genética , Sitios de Unión , Modelos Moleculares , Cristalografía por Rayos X , Estabilidad Proteica , Dicroismo Circular , Histidina/química , Histidina/metabolismo , Conformación Proteica
4.
J Inorg Biochem ; 248: 112364, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689037

RESUMEN

Hepcidin is an iron regulatory hormone that does not bind iron directly. Instead, its mature 25-peptide form (H25) contains a binding site for other metals, the so-called ATCUN/NTS (amino-terminal Cu/Ni binding site). The Cu(II)-hepcidin complex was previously studied, but due to poor solubility and difficult handling of the peptide the definitive account on the binding equilibrium was not obtained reliably. In this study we performed a series of fluorescence competition experiments between H25 and its model peptides containing the same ATCUN/NTS site and determined the Cu(II) conditional binding constant of the CuH25 complex at pH 7.4, CK7.4 = 4 ± 2 × 1014 M-1. This complex was found to be very inert in exchange reactions and poorly reactive in the ascorbate consumption test. The consequences of these findings for the putative role of Cu(II) interactions with H25 are discussed.


Asunto(s)
Hepcidinas , Hierro , Humanos , Sitios de Unión , Fluorescencia , Dominios Proteicos
5.
Inorg Chem ; 62(10): 4076-4087, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36863010

RESUMEN

The widespread application of silver nanoparticles in medicinal and daily life products increases the exposure to Ag(I) of thiol-rich biological environments, which help control the cellular metallome. A displacement of native metal cofactors from their cognate protein sites is a known phenomenon for carcinogenic and otherwise toxic metal ions. Here, we examined the interaction of Ag(I) with the peptide model of the interprotein zinc hook (Hk) domain of Rad50 protein from Pyrococcus furiosus, a key player in DNA double-strand break (DSB) repair. The binding of Ag(I) to 14 and 45 amino acid long peptide models of apo- and Zn(Hk)2 was experimentally investigated by UV-vis spectroscopy, circular dichroism, isothermal titration calorimetry, and mass spectrometry. The Ag(I) binding to the Hk domain was found to disrupt its structure via the replacement of the structural Zn(II) ion by multinuclear Agx(Cys)y complexes. The ITC analysis indicated that the formed Ag(I)-Hk species are at least 5 orders of magnitude stronger than the otherwise extremely stable native Zn(Hk)2 domain. These results show that Ag(I) ions may easily disrupt the interprotein zinc binding sites as an element of silver toxicity at the cellular level.


Asunto(s)
Nanopartículas del Metal , Zinc , Zinc/química , Plata , Sitios de Unión , Unión Proteica
6.
Metallomics ; 15(2)2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36787891

RESUMEN

The purpose of this essay is to propose that metallomic studies in the area of extracellular copper transport are incomplete without the explicit consideration of kinetics of Cu2+ion binding and exchange reactions. The kinetic data should be interpreted in the context of time constraints imposed by specific physiological processes. Examples from experimental studies of Cu2+ ion interactions with amino-terminal copper and nickel binding site/N-terminal site motifs are used to demonstrate that duration and periodicity of such processes as bloodstream transport or neurotransmission promote the reaction intermediates to the role of physiological effectors. The unexpectedly long lifetimes of intermediate complexes lead to their accumulation and novel reactivities. The emerging ideas are discussed in the context of other research areas in metallomics.


Asunto(s)
Cobre , Péptidos , Cobre/metabolismo , Cinética
7.
Front Mol Biosci ; 10: 1335704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274095

RESUMEN

Introduction: Helicobacter pylori is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. H. pylori infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches. In this study, we focused on Hp0231 (DsbK), an essential component of the H. pylori Dsb (disulfide bond) oxidative pathway, and investigated peptide-based inhibition as a potential therapeutic strategy. Methods: Three inhibitory peptides designed by computational modeling were evaluated for their effectiveness using a time-resolved fluorescence assay. We also examined the binding affinity between Hp0231 and the peptides using microscale thermophoresis. Results and discussion: Our findings demonstrate that in silico-designed synthetic peptides can effectively inhibit Hp0231-mediated peptide oxidation. Targeting Hp0231 oxidase activity could attenuate H. pylori virulence without compromising bacterial viability. Therefore, peptide-based inhibitors of Hp0231 could be candidates for the development of new targeted strategy, which does not influence the composition of the natural human microbiome, but deprive the bacterium of its pathogenic properties.

8.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555126

RESUMEN

Hepcidin (DTHFPICIFCCGCCHRSKCGMCCKT), an iron-regulatory hormone, is a 25-amino-acid peptide with four intramolecular disulfide bonds circulating in blood. Its hormonal activity is indirect and consists of marking ferroportin-1 (an iron exporter) for degradation. Hepcidin biosynthesis involves the N-terminally extended precursors prepro-hepcidin and pro-hepcidin, processed by peptidases to the final 25-peptide form. A sequence-specific formation of disulfide bonds and export of the oxidized peptide to the bloodstream follows. In this study we considered the fact that prior to export, reduced hepcidin may function as an octathiol ligand bearing some resemblance to the N-terminal part of the α-domain of metallothioneins. Consequently, we studied its ability to bind Zn(II) and Cd(II) ions using the original peptide and a model for prohepcidin extended N-terminally with a stretch of five arginine residues (5R-hepcidin). We found that both form equivalent mononuclear complexes with two Zn(II) or Cd(II) ions saturating all eight Cys residues. The average affinity at pH 7.4, determined from pH-metric spectroscopic titrations, is 1010.1 M-1 for Zn(II) ions; Cd(II) ions bind with affinities of 1015.2 M-1 and 1014.1 M-1. Using mass spectrometry and 5R-hepcidin we demonstrated that hepcidin can compete for Cd(II) ions with metallothionein-2, a cellular cadmium target. This study enabled us to conclude that hepcidin binds Zn(II) and Cd(II) sufficiently strongly to participate in zinc physiology and cadmium toxicity under intracellular conditions.


Asunto(s)
Cadmio , Hepcidinas , Cadmio/metabolismo , Péptidos , Hierro , Disulfuros , Metalotioneína/metabolismo
10.
Dalton Trans ; 51(47): 18143-18151, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36385190

RESUMEN

Copper(II) complexes of peptides with a histidine residue at the second position (His2 peptides) provide a unique profile of electrochemical behavior, offering signals of both Cu(II) reduction and Cu(II) oxidation. Furthermore, their structures with vacant positions in the equatorial coordination plane could facilitate interactions with other biomolecules. In this work, we designed a library of His2 peptides based on the sequence of Aß5-9 (RHDSG), an amyloid beta peptide derivative. The changes in the Aß5-9 sequence highly affect the Cu(II) oxidation signals, altered further by anionic species. As a result, Cu(II) complexes of Arg1 peptides without Asp residues were chosen as the most promising peptide-based molecular receptors for phosphates. The voltammetric data on Cu(II) oxidation for binary Cu(II)-His2 peptide complexes and ternary Cu(II)-His2 peptide/phosphate systems were also tested for His2 peptide recognition. We achieved a highly promising identification of subtle modifications in the peptide sequence. Thus, we introduce voltammetric measurement as a potential novel tool for peptide sequence recognition.


Asunto(s)
Péptidos beta-Amiloides , Fosfatos
11.
Dalton Trans ; 51(46): 17553-17557, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36408794

RESUMEN

We used a series of modified/substituted GGH analogues to investigate the kinetics of Cu(II) binding to ACTUN peptides. Rules for rate modulation by 1st and 2nd sphere interactions were established, providing crucial insight into elucidation of the reaction mechanism and its contribution to biological copper transport.


Asunto(s)
Cobre , Transporte Biológico , Cinética
12.
Dalton Trans ; 51(37): 14267-14276, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36069273

RESUMEN

Preeclampsia is a blood pressure disorder associated with significant proteinuria. Hypertensive women have increased levels of neurokinin B (NKB) and Cu(II) ions in blood plasma during pregnancy. NKB bears the ATCUN/NTS N-terminal motif empowering strong Cu(II) binding in a characteristic four-nitrogen (4N) square-planar motif, but an alternative Cu(II)NKB2 geometry was proposed earlier. We studied the coordination of DMHD-NH2, representing the NKB ATCUN/NTS motif, to Cu(II) by potentiometry, electronic absorption and circular dichroism spectroscopy in water and SDS micellar solutions. NKB was studied in SDS micelles. The experiments were aided by density functional theory (DFT) calculations. We found that under all investigated conditions NKB formed solely 1 : 1 complexes. In the absence of SDS, the 4N complex at physiological pH 7.4 has a very low dissociation constant of 3.5 fM, but the interaction with SDS weakened the binding nearly thousand-fold. This interaction may serve as a molecular switch for specific Cu(II) delivery to membrane receptors by NKB. Furthermore, the calculations based on clinical data indicate a potential toxic role of Cu(II)NKB in preeclampsia.


Asunto(s)
Cobre , Preeclampsia , Cobre/química , Femenino , Humanos , Iones , Micelas , Neuroquinina B/metabolismo , Nitrógeno , Agua
13.
Molecules ; 27(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080347

RESUMEN

Nickel is toxic to humans. Its compounds are carcinogenic. Furthermore, nickel allergy is a severe health problem that affects approximately 10-20% of humans. The mechanism by which these conditions develop remains unclear, but it may involve the cleavage of specific proteins by nickel ions. Ni(II) ions cleave the peptide bond preceding the Ser/Thr-Xaa-His sequence. Such sequences are present in all four enzymes of the melatonin biosynthesis pathway, i.e., tryptophan 5-hydroxylase 1, aromatic-l-amino-acid decarboxylase, serotonin N-acetyltransferase, and acetylserotonin O-methyltransferase. Moreover, fragments prone to Ni(II) are exposed on surfaces of these proteins. Our results indicate that all four studied fragments undergo cleavage within tens of hours at pH 8.2 and 37 °C, corresponding with the conditions in the mitochondrial matrix. Since melatonin, a potent antioxidant and anti-inflammatory agent, is synthesized within the mitochondria of virtually all human cells, depleting its supply may be detrimental, e.g., by raising the oxidative stress level. Intriguingly, Ni(II) ions have been shown to mimic hypoxia through the stabilization of HIF-1α protein, but melatonin prevents the action of HIF-1α. Considering all this, the enzymes of the melatonin biosynthesis pathway seem to be a toxicological target for Ni(II) ions.


Asunto(s)
Melatonina , Níquel , Humanos , Iones , Melatonina/farmacología , Níquel/química , Unión Proteica , Proteínas/metabolismo
14.
Front Mol Biosci ; 9: 828674, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359602

RESUMEN

Deficiency in a principal epidermal barrier protein, filaggrin (FLG), is associated with multiple allergic manifestations, including atopic dermatitis and contact allergy to nickel. Toxicity caused by dermal and respiratory exposures of the general population to nickel-containing objects and particles is a deleterious side effect of modern technologies. Its molecular mechanism may include the peptide bond hydrolysis in X1-S/T-c/p-H-c-X2 motifs by released Ni2+ ions. The goal of the study was to analyse the distribution of such cleavable motifs in the human proteome and examine FLG vulnerability of nickel hydrolysis. We performed a general bioinformatic study followed by biochemical and biological analysis of a single case, the FLG protein. FLG model peptides, the recombinant monomer domain human keratinocytes in vitro and human epidermis ex vivo were used. We also investigated if the products of filaggrin Ni2+-hydrolysis affect the activation profile of Langerhans cells. We found X1-S/T-c/p-H-c-X2 motifs in 40% of human proteins, with the highest abundance in those involved in the epidermal barrier function, including FLG. We confirmed the hydrolytic vulnerability and pH-dependent Ni2+-assisted cleavage of FLG-derived peptides and FLG monomer, using in vitro cell culture and ex-vivo epidermal sheets; the hydrolysis contributed to the pronounced reduction in FLG in all of the models studied. We also postulated that Ni-hydrolysis might dysregulate important immune responses. Ni2+-assisted cleavage of barrier proteins, including FLG, may contribute to clinical disease associated with nickel exposure.

15.
J Am Chem Soc ; 144(14): 6326-6342, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353516

RESUMEN

Covalent protein kinase inhibitors exploit currently noncatalytic cysteines in the adenosine 5'-triphosphate (ATP)-binding site via electrophiles directly appended to a reversible-inhibitor scaffold. Here, we delineate a path to target solvent-exposed cysteines at a distance >10 Å from an ATP-site-directed core module and produce potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors. First, reactive warheads are used to reach out to Cys862 on PI3Kα, and second, enones are replaced with druglike warheads while linkers are optimized. The systematic investigation of intrinsic warhead reactivity (kchem), rate of covalent bond formation and proximity (kinact and reaction space volume Vr), and integration of structure data, kinetic and structural modeling, led to the guided identification of high-quality, covalent chemical probes. A novel stochastic approach provided direct access to the calculation of overall reaction rates as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker lengths. X-ray crystallography, protein mass spectrometry (MS), and NanoBRET assays confirmed covalent bond formation of the acrylamide warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351, the only known PI3Kα irreversible inhibitor. Washout experiments in cancer cell lines with mutated, constitutively activated PI3Kα showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kß-dependent signaling, which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective signaling branches. The proposed approach is generally suited to develop covalent tools targeting distal, unexplored Cys residues in biologically active enzymes.


Asunto(s)
Cisteína , Fosfatidilinositol 3-Quinasa , Adenosina Trifosfato , Animales , Cisteína/química , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Ratas
16.
Angew Chem Int Ed Engl ; 61(12): e202116621, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35041243

RESUMEN

Recently, we demonstrated that AgI can directly replace ZnII in zinc fingers (ZFs). The cooperative binding of AgI to ZFs leads to a thermodynamically irreversible formation of silver clusters destroying the native ZF structure. Thus, a reported loss of biological function of ZF proteins is a likely consequence of such replacement. Here, we report an X-ray absorption spectroscopy (XAS) study of Agn Sn clusters formed in ZFs to probe their structural features. Selective probing of the local environment around AgI by XAS showed the predominance of digonal AgI coordination to two sulfur donors, coordinated with an average Ag-S distance at 2.41 Å. No Ag-N bonds were present. A mixed AgS2 /AgS3 geometry was found solely in the CCCH AgI -ZF. We also show that cooperative replacement of ZnII ions with the studied Ag2 S2 clusters occurred in a three-ZF transcription factor protein 1MEY#, leading to a dissociation of 1MEY# from the complex with its cognate DNA.


Asunto(s)
Plata , Dedos de Zinc , ADN/química , Proteínas de Unión al ADN/química , Plata/química , Factores de Transcripción/química
17.
J Am Chem Soc ; 144(2): 709-722, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34985880

RESUMEN

The human copper-binding protein metallothionein-3 (MT-3) can reduce Cu(II) to Cu(I) and form a polynuclear Cu(I)4-Cys5-6 cluster concomitant with intramolecular disulfide bonds formation, but the cluster is unusually inert toward O2 and redox-cycling. We utilized a combined array of rapid-mixing spectroscopic techniques to identify and characterize the transient radical intermediates formed in the reaction between Zn7MT-3 and Cu(II) to form Cu(I)4Zn(II)4MT-3. Stopped-flow electronic absorption spectroscopy reveals the rapid formation of transient species with absorption centered at 430-450 nm and consistent with the generation of disulfide radical anions (DRAs) upon reduction of Cu(II) by MT-3 cysteine thiolates. These DRAs are oxygen-stable and unusually long-lived, with lifetimes in the seconds regime. Subsequent DRAs reduction by Cu(II) leads to the formation of a redox-inert Cu(I)4-Cys5 cluster with short Cu-Cu distances (<2.8 Å), as revealed by low-temperature (77 K) luminescence spectroscopy. Rapid freeze-quench Raman and electron paramagnetic resonance (EPR) spectroscopy characterization of the intermediates confirmed the DRA nature of the sulfur-centered radicals and their subsequent oxidation to disulfide bonds upon Cu(II) reduction, generating the final Cu(I)4-thiolate cluster. EPR simulation analysis of the radical g- and A-values indicate that the DRAs are directly coupled to Cu(I), potentially explaining the observed DRA stability in the presence of O2. We thus provide evidence that the MT-3 Cu(I)4-Cys5 cluster assembly process involves the controlled formation of novel long-lived, copper-coupled, and oxygen-stable disulfide radical anion transient intermediates.


Asunto(s)
Cobre/química , Disulfuros/química , Radicales Libres/química , Metalotioneína 3/química , Oxígeno/química , Espectroscopía de Resonancia por Spin del Electrón , Glutatión/química , Humanos , Metalotioneína 3/genética , Metalotioneína 3/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Espectrometría de Fluorescencia , Zinc/química
18.
Inorg Chem ; 60(24): 19448-19456, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34878265

RESUMEN

Amyloid-beta (Aß) peptides, potentially relevant in the pathology of Alzheimer's disease, possess distinctive coordination properties, enabling an effective binding of transition-metal ions, with a preference for Cu(II). In this work, we found that a N-truncated Aß analogue bearing a His-2 motif, Aß5-9, forms a stable Ni(II) high-spin octahedral complex at a physiological pH of 7.4 with labile coordination sites and facilitates ternary interactions with phosphates and nucleotides. As the pH increased above 9, a spin transition from a high-spin to a low-spin square-planar Ni(II) complex was observed. Employing electrochemical techniques, we showed that interactions between the binary Ni(II)-Aß5-9 complex and phosphate species result in significant changes in the Ni(II) oxidation signal. Thus, the Ni(II)-Aß5-9 complex could potentially serve as a receptor in electrochemical biosensors for phosphate species. The obtained results could also be important for nickel toxicology.


Asunto(s)
Péptidos beta-Amiloides
19.
J Am Soc Mass Spectrom ; 32(12): 2766-2776, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738801

RESUMEN

The toolset of mass spectrometry (MS) is still expanding, and the number of metal ion complexes researched this way is growing. The Cu(II) ion forms particularly strong peptide complexes of biological interest which are frequent objects of MS studies, but quantitative aspects of some reported results are at odds with those of experiments performed in solution. Cu(II) complexes are usually characterized by fast ligand exchange rates, despite their high affinity, and we speculated that such kinetic lability could be responsible for the observed discrepancies. In order to resolve this issue, we selected peptides belonging to the ATCUN family characterized with high and thoroughly determined Cu(II) binding constants and re-estimated them using two ESI-MS techniques: standard conditions in combination with serial dilution experiments and very mild conditions for competition experiments. The sample acidification, which accompanies the electrospray formation, was simulated with the pH-jump stopped-flow technique. Our results indicate that ESI-MS should not be used for quantitative studies of Cu(II)-peptide complexes because the electrospray formation process compromises the entropic contribution to the complex stability, yielding underestimations of complex stability constants.


Asunto(s)
Complejos de Coordinación , Cobre , Péptidos , Espectrometría de Masa por Ionización de Electrospray/métodos , Complejos de Coordinación/análisis , Complejos de Coordinación/química , Cobre/análisis , Cobre/química , Histidina/química , Cinética , Péptidos/análisis , Péptidos/química
20.
Inorg Chem ; 60(23): 18048-18057, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34781677

RESUMEN

Gly-His-Lys (GHK) is a tripeptide present in the human bloodstream that exhibits a number of biological functions. Its activity is attributed to the copper-complexed form, Cu(II)GHK. Little is known, however, about the molecular aspects of the mechanism of its action. Here, we examined the reaction of Cu(II)GHK with reduced glutathione (GSH), which is the strongest reductant naturally occurring in human plasma. Spectroscopic techniques (UV-vis, CD, EPR, and NMR) and cyclic voltammetry helped unravel the reaction mechanism. The impact of temperature, GSH concentration, oxygen access, and the presence of ternary ligands on the reaction were explored. The transient GSH-Cu(II)GHK complex was found to be an important reaction intermediate. The kinetic and redox properties of this complex, including tuning of the reduction rate by ternary ligands, suggest that it may provide a missing link in copper trafficking as a precursor of Cu(I) ions, for example, for their acquisition by the CTR1 cellular copper transporter.


Asunto(s)
Complejos de Coordinación/metabolismo , Cobre/metabolismo , Glutatión/metabolismo , Oligopéptidos/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Complejos de Coordinación/sangre , Complejos de Coordinación/química , Cobre/sangre , Cobre/química , Glutatión/sangre , Glutatión/química , Humanos , Estructura Molecular , Oligopéptidos/sangre , Oligopéptidos/química , Oxidación-Reducción , Compuestos de Sulfhidrilo/sangre , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA