Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(10): 25239-25255, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35829879

RESUMEN

Recently, the production of silver nanoparticles and their commercial products has generated increased concern and caused a hazardous impact on the ecosystem. Therefore, the present study examines the toxic effect of chemically engineered silver nanoparticles (SNPs) and polyvinylpyrrolidone-capped silver nanoparticles (PVP-SNPs) on the earthworm Eudrilus eugeniae (E. eugeniae). The SNPs and PVP-SNPs were synthesized, and their characterization was determined by UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The toxicity of SNPs and PVP-SNPs was evaluated using E. eugeniae. The present result indicates that the lethal concentration (LC50) of SNPs and PVP-SNPs were achieved at 22.66 and 43.27 µg/mL, respectively. The activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) was increased in SNPs compared to PVP-SNPs. Importantly, we have noticed that the E. eugeniae can amputate its body segments after exposure to SNPs and PVP-SNPs. This exciting phenomenon is named "autotomy," which describes a specific feature of E. eugeniae to escape from the toxic contaminants and predators. Accordingly, we have suggested this unique behavior may facilitate to assess the toxic effect of SNPs and PVP-SNPs in E. eugeniae.


Asunto(s)
Nanopartículas del Metal , Oligoquetos , Animales , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Plata/química , Ecosistema , Superóxido Dismutasa
2.
Funct Integr Genomics ; 22(4): 1-32, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35416560

RESUMEN

Among the annelids, earthworms are renowned for their phenomenal ability to regenerate the lost segments. The adult earthworm Eudrilus eugeniae contains 120 segments and the body segments of the earthworm are divided into pre-clitellar, clitellar and post-clitellar segments. The present study denoted that clitellum plays vital role in the successful regeneration of the species. We have performed histological studies to identify among the three skin layers of the earthworm, which cellular layer supports the blastema formation and regeneration of the species. The histological evidences denoted that the proliferation of the longitudinal cell layer at the amputation site is crucial for the successful regeneration of the earthworm and it takes place only in the presence of an intact clitellum. Besides we have performed clitellar transcriptome analysis of the earthworm Eudrilus eugeniae to monitor the key differentially expressed genes and their associated functions and pathways controlling the clitellar tissue changes during both anterior and posterior regeneration of the earthworm. A total of 4707 differentially expressed genes (DEGs) were identified between the control clitellum and clitellum of anterior regenerated earthworms and 4343 DEGs were detected between the control clitellum and clitellum of posterior regenerated earthworms. The functional enrichment analysis confirmed the genes regulating the muscle mass shape and structure were significantly downregulated and the genes associated with response to starvation and anterior-posterior axis specification were significantly upregulated in the clitellar tissue during both anterior and posterior regeneration of the earthworm. The RNA sequencing data of clitellum and the comparative transcriptomic analysis were helpful to understand the complex regeneration process of the earthworm.


Asunto(s)
Oligoquetos , Animales , Perfilación de la Expresión Génica , Oligoquetos/genética , Oligoquetos/metabolismo
3.
Mol Biol Rep ; 49(6): 4225-4236, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35211863

RESUMEN

BACKGROUND: The arrestin domain containing proteins (ARRDCs) are crucial adaptor proteins assist in signal transduction and regulation of sensory physiology. The molecular localization of the ARRDC gene has been confined mainly to the mammalian system while in invertebrates the expression pattern was not addressed significantly. The present study reports the identification, tissue specific expression and functional characterization of an ARRDC transcript in earthworm, Eudrilus eugeniae. METHODS AND RESULTS: The coding region of earthworm ARRDC transcript was 1146 bp in length and encoded a protein of 381 amino acid residues. The worm ARRDC protein consists of conserved N-terminal and C-terminal regions and showed significant homology with the ARRDC3 sequence of other species. The tissue specific expression analysis through whole mount in-situ hybridization denoted the expression of ARRDC transcript in the central nervous system of the worm which includes cerebral ganglion and ventral nerve cord. Besides, the expression of ARRDC gene was observed in the epidermal region of earthworm skin. The functional characterization of ARRDC gene was assessed through siRNA silencing and the gene was found to play key role in the light sensing ability and photophobic movement of the worm. CONCLUSIONS: The neuronal and dermal expression patterns of ARRDC gene and its functional characterization hypothesized the role of the gene in assisting the photosensory cells to regulate the process of photoreception and phototransduction in the worm.


Asunto(s)
Oligoquetos , Animales , Arrestina/genética , Arrestina/metabolismo , Hibridación in Situ , Mamíferos/metabolismo , Oligoquetos/genética , Oligoquetos/metabolismo , Proteínas/genética , ARN Interferente Pequeño/metabolismo
4.
Mol Biol Rep ; 48(1): 259-283, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33306150

RESUMEN

The oligochaete earthworm, Eudrilus eugeniae is capable of regenerating both anterior and posterior segments. The present study focuses on the transcriptome analysis of earthworm E. eugeniae to identify and functionally annotate the key genes supporting the anterior blastema formation and regulating the anterior regeneration of the worm. The Illumina sequencing generated a total of 91,593,182 raw reads which were assembled into 105,193 contigs using CLC genomics workbench. In total, 40,946 contigs were annotated against the NCBI nr and SwissProt database and among them, 15,702 contigs were assigned to 14,575 GO terms. Besides a total of 9389 contigs were mapped to 416 KEGG biological pathways. The RNA-Seq comparison study identified 10,868 differentially expressed genes (DEGs) and of them, 3986 genes were significantly upregulated in the anterior regenerated blastema tissue samples of the worm. The GO enrichment analysis showed angiogenesis and unfolded protein binding as the top enriched functions and the pathway enrichment analysis denoted TCA cycle as the most significantly enriched pathway associated with the upregulated gene dataset of the worm. The identified DEGs and their function and pathway information can be effectively utilized further to interpret the key cellular, genetic and molecular events associated with the regeneration of the worm.


Asunto(s)
Oligoquetos/genética , Regeneración/genética , Transcriptoma/genética , Animales , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Oligoquetos/crecimiento & desarrollo , Regeneración/fisiología , Secuenciación del Exoma
5.
Data Brief ; 17: 15-23, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29876371

RESUMEN

Bacillus species 062011 msu is a harmful pathogenic strain responsible for causing abscessation in sheep and goat population studied by Mariappan et al. (2012) [1]. The organism specifically targets the female sheep and goat population and results in the reduction of milk and meat production. In the present study, we have performed the whole genome sequencing of the pathogenic isolate using the Ion Torrent sequencing platform and generated 458,944 raw reads with an average length of 198.2 bp. The genome sequence was assembled, annotated and analysed for the genetic islands, metabolic pathways, orthologous groups, virulence factors and antibiotic resistance genes associated with the pathogen. Simultaneously the 16S rRNA sequencing study and genome sequence comparison data confirmed that the strain belongs to the species Bacillus cereus and exhibits 99% sequence homo;logy with the genomes of B. cereus ATCC 10987 and B. cereus FRI-35. Hence, we have renamed the organism as Bacillus cereus 062011msu. The Whole Genome Shotgun (WGS) project has been deposited at DDBJ/ENA/GenBank under the accession NTMF00000000 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA404036(SAMN07629099)).

6.
PLoS One ; 12(4): e0175319, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28403226

RESUMEN

TCTP (Translationally Controlled Tumour Protein) is a multifunctional protein that plays a role in the development, immune system, tumour reversion, and maintenance of stem cells. The mRNA of the Tpt1 gene is over-expressed during liver regeneration. But, the function of the protein in regeneration is not known. To study the role of the protein in regeneration, the earthworm Eudrilus eugeniae was chosen. First, the full length cDNA of the Tpt1 gene was sequenced. The size of the cDNA is 504 bp and the protein has 167 amino acids. The highest level of TCTP expression was documented in the worm after three days of regeneration. The protein was found to be expressed specifically in the epithelial layer of the skin. During regeneration, the protein expression was found to be the highest at the tip of blastema. The pharmacological suppression of TCTP using nutlin-3 and TCTP RNAi experiments resulted in the failure of the regeneration process. The suppression of TCTP caused the arrest of proliferation in posterior amputated worms. The severe cell death was documented in the amputated region of nutlin-3 injected worm. The silencing of TCTP has blocked the modification of clitellar segments. The experiments confirm that TCTP has major functions in the upstream signalling of cell proliferation in the early regeneration process in E. eugeniae.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Oligoquetos/fisiología , Proteínas/metabolismo , Regeneración , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Proliferación Celular , Expresión Génica , Mitosis , Oligoquetos/química , Oligoquetos/genética , Proteínas/análisis , Proteínas/genética , Interferencia de ARN , ARN Mensajero/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA