Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17724, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085483

RESUMEN

Stomoxys flies exhibit an attraction toward objects that offer no rewards, such as traps and targets devoid of blood or nectar incentives. This behavior provides an opportunity to develop effective tools for vector control and monitoring. However, for these systems to be sustainable and eco-friendly, the visual cues used must be specific to target vector(s). In this study, we modified the existing blue Vavoua trap, which was originally designed to attract biting flies, to create a deceptive host attraction system specifically biased toward attracting Stomoxys. Our research revealed that Stomoxys flies are attracted to various colors, with red proving to be the most attractive and selective color for Stomoxys compared to the other colors tested. Interestingly, our investigation of the cattle-Stomoxys interaction demonstrated that Stomoxys flies do not prefer a specific livestock fur color phenotype, despite variation in the spectrum. To create a realistic sensory impression of the trap in the Stomoxys nervous system, we incorporated olfactory cues from livestock host odors that significantly increased trap catches. The optimized novel polymer bead dispenser is capable of effectively releasing the attractive odor carvone + p-cresol, with strong plume strands and longevity. Overall, red trap baited with polymer bead dispenser is environmentally preferred.


Asunto(s)
Olfato , Animales , Olfato/fisiología , Visión Ocular/fisiología , Odorantes , Muscidae/fisiología , Bovinos , Conducta Animal/fisiología , Color
2.
FEMS Microbes ; 5: xtae012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770063

RESUMEN

To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endophytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla, respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30 and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes (Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in 1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.

3.
Heliyon ; 10(10): e30839, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778936

RESUMEN

Globally, the demand for natural remedies such as honey to manage ailments has increased. Yet, the health benefits and chemical composition of African honeys are not well understood. Therefore, this study aimed to characterise the bio-functional properties and the phytochemical composition of 18 Apis mellifera honeys from Kenya, Uganda, and Cameroon in comparison to the popular and commercially available Manuka 5+ honey from New Zealand. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH-RSA) was used to determine the antioxidant property, whilst the agar well diffusion and broth dilution (Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)) assays were used to determine antimicrobial property. Further, colorimetric methods were used for phytochemical analysis. Our results showed that honeys collected from Rift Valley region of Kenya (e.g. Poi, Salabani and Mbechot) and Western region of Cameron (e.g. Bangoulap) had the highest antioxidant (DPPH RSA of 41.52-43.81%) and antimicrobial (MIC (3.125-6.25% w/v) and MBC (6.25-12.5% w/v)) activities. Additionally, the total flavonoid (770-970 mg QE/100 g), phenol (944.79-1047.53 mg GAE/100 g), terpenoid (239.78-320.89 mg LE/100 g) and alkaloid (119.40-266.57 mg CE/100 g) contents reached the highest levels in these bioactive African honeys, which significantly and positively correlated with their bio-functional properties. The functional and phytochemical composition of these bioactive African honeys were similar to or higher than those of the Manuka 5+ honey. Furthermore, gas chromatography-mass spectrometry analysis of African honeys revealed 10 most prominent volatile organic compounds that contribute to their geographical distinction: triacontane, heptacosane, (Z)-9-tricosene, tetracosane, 6-propyl-2,3-dihydropyran-2,4-dione, octacosane, 1,2,4-trimethylcyclohexane, 1,3-bis(1,1-dimethylethyl) benzene, 2-methylheptane and phytol. Overall, our findings suggest that some of the tested African honeys are natural sources of antimicrobial and antioxidant therapies that can be exploited upon further research and commercialized as high value honey.

4.
Commun Biol ; 6(1): 905, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666902

RESUMEN

Rapid and ongoing climate change increases global temperature, impacts feeding, and reproduction in insects. The olfaction plays an important underlying role in these behaviors in most insect species. Here, we investigated how changing temperatures affect odor detection and ensuing behavior in three drosophilid flies: Drosophila novamexicana, D. virilis and D. ezoana, species adapted to life in desert, global, and subarctic climates, respectively. Using a series of thermal preference assays, we confirmed that the three species indeed exhibit distinct temperature preferences. Next, using single sensillum recording technique, we classified olfactory sensory neurons (OSNs) present in basiconic sensilla on the antenna of the three species and thereby identified ligands for each OSN type. In a series of trap assays we proceeded to establish the behavioral valence of the best ligands and chose guaiacol, methyl salicylate and isopropyl benzoate as representatives of a repellent, attractant and neutral odor. Next, we assessed the behavioral valence of these three odors in all three species across a thermal range (10-35 °C), with flies reared at 18 °C and 25 °C. We found that both developmental and experimental temperatures affected the behavioral performance of the flies. Our study thus reveals temperature-dependent changes in odor-guided behavior in drosophilid flies.


Asunto(s)
Biodiversidad , Odorantes , Animales , Temperatura , Ligandos , Drosophila
5.
BMC Ecol Evol ; 21(1): 78, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947327

RESUMEN

BACKGROUND: In holometabolous insects, environmental factors experienced in pre-imaginal life stages affect the life-history traits within that stage and can also influence subsequent life stages. Here, I assessed tolerance to water immersion by the larval instars of the stable fly, Stomoxys calcitrans L. (Diptera: Muscidae) and its impact on the life-history traits of their subsequent life stages. RESULTS: After submerging the three larval instars of S. calcitrans in distilled water, I found that the first instar larvae remained active for longer as compared to the second and third instar larvae. Also, the first instar larvae took a longer period to recover from the stress-induced immobility when removed from the water and returned to ambient temperature. When I followed the development of individuals of each larval instar that survived from water immersion, I found that their developmental time, weight, pupation percentage, adult emergence percentage and adult weight were negatively affected by this stressor. However, the weight of S. calcitrans adults developed from immersed first larval instar individuals was not affected by water immersion whereas their counterparts developed from immersed second and third larval instars had lower body weight. This suggests that in S. calcitrans, water immersion stress at the earlier stage is less detrimental than that experienced at late stages. CONCLUSION: This study provides a comparative overview of the fitness consequences associated with water immersion stress during S. calcitrans larval ontogeny. The results prove that the fitness shift induced by water immersion in S. calcitrans is stage-specific. My results illustrate the importance of considering each larval instar when assessing the impact of environmental factors on holometabolous insect performance as these may be decoupled by metamorphosis.


Asunto(s)
Muscidae , Animales , Tolerancia a Medicamentos , Inmersión , Larva , Agua
6.
Front Fungal Biol ; 2: 637817, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744116

RESUMEN

Entomopathogenic fungi can cause substantial mortality in harmful insects. Before killing the insect, these pathogens start by negatively affecting the biological parameters of the host. Prior to our study, the information about how fungal exposure affects the biological parameters of the stable fly, Stomoxys calcitrans was still elusive. Therefore, we aimed to assess the infection of S. calcitrans with some Metarhizium anisopliae strains, and their impact on feeding, fecundity, fertility and other life-history traits of this fly. Among the 11 M. anisopliae strains screened, we identified ICIPE 30 as the most virulent strain against S. calcitrans. We observed that the infectivity of this strain was sex and age-dependent. Infected male S. calcitrans died earlier than their counterpart females. Older infected S. calcitrans died faster than infected young ones. Also, male and female S. calcitrans successfully transmitted ICIPE 30 conidia to their mates. We demonstrated that infection by ICIPE 30 extended the feeding time of S. calcitrans and consequently reduced the feeding probability of the fly and the amount of blood taken. Using a dual test oviposition bioassay, we determined that uninfected gravid female S. calcitrans avoided laying eggs on substrates amended with ICIPE 30 conidia. We showed that these conidia could lower the hatchability of the eggs deposited by gravid females. Using, a no-choice test, we showed that gravid female S. calcitrans infected with ICIPE 30 laid fewer eggs than uninfected females and those eggs hatched less. Using 11 strains of M. anisopliae and four high concentrations of ICIPE 30 conidia, we verified that S. calcitrans larvae were not susceptible to fungal infection. Further, we showed that though these larvae were tolerant to fungal infection, there was a significant effect on their fitness, with contaminated larvae having a small bodyweight coupled with longer developmental time as compared to uncontaminated larvae. Our study provides detailed information on how fungal infection affects the biology of S. calcitrans and the potential of using M. anisopliae ICIPE 30 as a biopesticide to reduce the fly population. Such knowledge can assist in developing fungal-based control strategies against this harmful fly.

7.
Front Plant Sci ; 12: 796847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35222451

RESUMEN

Vascular shrubs growing along the draw-down zones of saline lakes must develop adaptive mechanisms to cope with high salinity, erratic environmental conditions, and other biotic and abiotic stresses. Microbial endophytes from plants growing in these unique environments harbor diverse metabolic and genetic profiles that play an important role in plant growth, health, and survival under stressful conditions. A variety of bacterial endophytes have been isolated from salt tolerant plants but their potential applications in agriculture have not been fully explored. To further address this gap, the present study sought to isolate culturable bacterial endophytes from shrubs growing along the draw-down zone of Lake Bogoria, a saline alkaline lake, and examined their functional characteristics and potential in the biocontrol of the bean root rot pathogen, Fusarium solani. We collected shrubs growing within 5 m distance from the shoreline of Lake Bogoria and isolated 69 bacterial endophytes. The endophytic bacteria were affiliated to three different phyla (Firmicutes, Proteobacteria, and Actinobacteria) with a bias in the genera, Bacillus, and they showed no tissue or plant specificity. All selected isolates were positive for catalase enzyme grown in 1.5 M NaCl; three isolates (B23, B19, and B53) produced indole acetic acid (IAA) and only one isolate, B23 did not solubilize phosphate on Pikovskaya agar. Isolates, B19 and B53 exhibited more than 50% of mycelial inhibition in the dual culture assay and completely inhibited the germination of F. solani spores in co-culture assays while two isolates, B07 and B39 had delayed fungal spore germination after an overnight incubation. All isolates were able to establish endophytic association in the roots, stems, and leaves of been seedlings in both seed soaking and drenching methods. Colonization of bean seedlings by the bacterial endophytes, B19 and B53 resulted in the biocontrol of F. solani in planta, reduced disease severity and incidence, and significantly increased both root and shoot biomass compared to the control. Taxonomic identification using 16S rRNA revealed that the two isolates belong to Enterobacter hormaechei subsp., Xiangfangensis and Bacillus megaterium. Our results demonstrate the potential use of these two isolates in the biocontrol of the bean root rot pathogen, F. solani and plant growth promotion.

8.
Foods ; 9(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570724

RESUMEN

Globally, there is growing interest to integrate insect-derived ingredients into food products. Knowledge of consumer perception to these food products is growing rapidly in the literature, but similar knowledge on the use of oils from African edible insects remains to be established. In this study, we (1) compared the chemistry of the oils from two commonly consumed grasshoppers, the desert locust Schistocerca gregaria and the African bush-cricket Ruspolia differens with those of olive and sesame oils; (2) compared the proximate composition of a baked product (cookie) prepared from the oils; (3) identified the potential volatiles and fatty acids contributing to the aroma and taste; and (4) examined acceptance and willingness to pay (WTP) for the baked product among consumers with no previous experience of entomophagy. Our results showed that the insect oils were compositionally richer in omega-3 fatty acids, flavonoids, and vitamin E than the plant oils. Proximate analysis and volatile chemistry revealed that differences in aroma and taste of the cookies were associated with their sources of oils. Consumers' acceptance was high for cookies prepared with R. differens (95%) and sesame (89%) oils compared to those with olive and S. gregaria oils. Notably, cookies prepared with insect oils had more than 50% dislike in aroma and taste. Consumers' willingness to pay for cookies prepared with insect oils was 6-8 times higher than for cookies containing olive oil, but 3-4 times lower than cookies containing sesame oil. Our findings show that integrating edible insect oils into cookies, entices people to ''take the first step" in entomophagy by decreasing insect-based food products neophobia, thereby, contributing to consumers' acceptance of the baked products. However, future research should explore the use of refined or flavored insect oils for bakery products to reduce off-flavors that might have been perceived in the formulated food products.

9.
Parasit Vectors ; 12(1): 222, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31077236

RESUMEN

BACKGROUND: In insects, oviposition decisions may lead to egg deposition in substrates with different larval density and nutritional levels. Individuals developing in such substrates may present plasticity in their phenotype. Here, we investigated the effect of two factors related to oviposition decisions, namely larval density and substrate quality, on the wing size and wing shape of the stable fly, Stomoxys calcitrans L. (Diptera: Muscidae). METHODS: We reared S. calcitrans larvae at different densities (5, 15 and 25) and on different substrates (camel, cow, donkey and sheep dung). For each fly that emerged, we recorded body weight, and detached, slide-mounted and photographed the right wing. Next, we collected 15 landmarks on each photographed wing, and applied geometric morphometric analysis to assess variation in wing size and wing shape of S. calcitrans across the different larval densities and substrate types. RESULTS: We observed that wing size and wing shape of S. calcitrans were affected by larval density and the nature of the developmental substrate. Flies reared in a group of 5 had larger wing centroid size, wing length, wing width, wing area and wing loading compared with those reared in a group of 25. Also, flies developed in donkey and sheep dung had larger wing centroid size, wing length, wing width, wing area and wing loading in comparison with those grown in camel and cow dung. Canonical variate analysis followed by discriminant analysis revealed significant wing shape variation in S. calcitrans across the different densities and substrates. Wing size had a significant but weak positive effect on wing shape. CONCLUSIONS: This study demonstrates the high sensitivity of S. calcitrans wings to variation in larval density and developmental substrate, and that use of landmark-based geometric morphometric analysis could improve our understanding of how flies of veterinary importance respond to environmental variability.


Asunto(s)
Larva/fisiología , Muscidae/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Camelus , Bovinos , Equidae , Heces/parasitología , Femenino , Muscidae/fisiología , Oviposición , Densidad de Población , Ovinos
10.
Sci Rep ; 9(1): 3850, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846772

RESUMEN

Selection of oviposition substrate is critical in holometabolous insects. Female stable flies, Stomoxys calcitrans, locate and select vertebrate herbivore dung in which they lay their eggs. However, the preference for vertebrate herbivore dung by S. calcitrans females, its fitness consequences for offspring, and the semiochemicals used to locate and select oviposition substrates remain unclear. Using oviposition choice tests and life table bioassays we found that gravid female S. calcitrans prefer to oviposit on donkey and sheep dung, which also improves the performance of their offspring. GC-MS analysis followed by random forest classification identified ß-citronellene and carvone as the most important predictive volatile organic compounds of donkey and sheep dung, respectively. In multiple choice oviposition bioassays, S. calcitrans laid more eggs in wet sand containing ß-citronellene and carvone than in other treatments. The attractiveness of these compounds was confirmed in a field trial, with traps baited with ß-citronellene and carvone catching more S. calcitrans. We conclude that gravid female S. calcitrans use semiochemical cues to choose oviposition substrates that maximise offspring fitness.


Asunto(s)
Muscidae/fisiología , Oviposición/fisiología , Olfato/fisiología , Animales , Señales (Psicología) , Equidae , Heces/química , Femenino , Ovinos , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA