Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 20(10): e1012649, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39453974

RESUMEN

Cottontail rabbit papillomavirus (CRPV), the first papillomavirus associated with tumor development, has been used as a powerful model to study papillomavirus pathogenesis for more than 90 years. However, lack of a comprehensive analysis of the CRPV transcriptome has impeded the understanding of CRPV biology and molecular pathogenesis. Here, we report the construction of a complete CRPV transcription map from Hershey CRPV-induced skin tumor tissues. By using RNA-seq in combination with long-reads PacBio Iso-seq, 5' and 3' RACE, primer-walking RT-PCR, Northern blot, and RNA in situ hybridization, we demonstrated that the CRPV genome transcribes its early and late RNA transcripts unidirectionally from at least five distinct major promoters (P) and polyadenylates its transcripts at two major polyadenylation (pA) sites. The viral early transcripts are primarily transcribed from three "early" promoters, P90, P156, and P907 and polyadenylated at nt 4368 by using an early polyadenylation signal (PAS) at nt 4351. Like other low-risk human papillomaviruses and animal papillomaviruses, CRPV E6 and E7 transcripts are transcribed from three separate early promoters. Transcripts from two "late" promoters, P7525, and P1225, utilize either an early PAS for E1^E4 or a late PAS at 7399 for L2 and L1 RNA polyadenylation at nt 7415 to express capsid L2 and L1 proteins respectively. By using the mapped four 5' splice sites and three 3' splice sites, CRPV RNA transcripts undergo extensive alternative splicing to produce more than 33 viral RNA isoforms for production of at least 12 viral proteins, some of which without codon optimization are expressible in rabbit RK13 and human HEK293T cells. The constructed full CRPV transcription map in this study for the first time will enhance our understanding of the structures and expressions of CRPV genes and their contribution to molecular pathogenesis and tumorigenesis.

2.
mBio ; 15(8): e0142024, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012151

RESUMEN

A substantial percentage of the population remains at risk for cervical cancer due to pre-existing human papillomavirus (HPV) infections, despite prophylactic vaccines. Early diagnosis and treatment are crucial for better disease outcomes. The development of new treatments heavily relies on suitable preclinical model systems. Recently, we established a mouse papillomavirus (MmuPV1) model that is relevant to HPV genital pathogenesis. In the current study, we validated the use of Papanicolaou (Pap) smears, a valuable early diagnostic tool for detecting HPV cervical cancer, to monitor disease progression in the MmuPV1 mouse model. Biweekly cervicovaginal swabs were collected from the MmuPV1-infected mice for viral DNA quantitation and cytology assessment. The Pap smear slides were evaluated for signs of epithelial cell abnormalities using the 2014 Bethesda system criteria. Tissues from the infected mice were harvested at various times post-viral infection for additional histological and virological assays. Over time, increased viral replication was consistent with higher levels of viral DNA, and it coincided with an uptick in epithelial cell abnormalities with higher severity scores noted as early as 10 weeks after viral infection. The cytological results also correlated with the histological evaluation of tissues harvested simultaneously. Both immunocompromised and immunocompetent mice with squamous cell carcinoma (SCC) cytology also developed vaginal SCCs. Notably, samples from the MmuPV1-infected mice exhibited similar cellular abnormalities compared to the corresponding human samples at similar disease stages. Hence, Pap smear screening proves to be an effective tool for the longitudinal monitoring of disease progression in the MmuPV1 mouse model. IMPORTANCE: Papanicolaou (Pap) smear has saved millions of women's lives as a valuable early screening tool for detecting human papillomavirus (HPV) cervical precancers and cancer. However, more than 200,000 women in the United States alone remain at risk for cervical cancer due to pre-existing HPV infection-induced precancers, as there are currently no effective treatments for HPV-associated precancers and cancers other than invasive procedures including a loop electrosurgical excision procedure (LEEP) to remove abnormal tissues. In the current study, we validated the use of Pap smears to monitor disease progression in our recently established mouse papillomavirus model. To the best of our knowledge, this is the first study that provides compelling evidence of applying Pap smears from cervicovaginal swabs to monitor disease progression in mice. This HPV-relevant cytology assay will enable us to develop and test novel antiviral and anti-tumor therapies using this model to eliminate HPV-associated diseases and cancers.


Asunto(s)
Modelos Animales de Enfermedad , Prueba de Papanicolaou , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Animales , Femenino , Ratones , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/diagnóstico , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/patología , Detección Precoz del Cáncer/métodos , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , ADN Viral/genética , Frotis Vaginal , Humanos , Estudios Longitudinales
3.
Cell ; 187(11): 2817-2837.e31, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38701783

RESUMEN

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Asunto(s)
Células Asesinas Naturales , Proteínas de la Membrana , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos B/metabolismo , Linfocitos B/citología , Médula Ósea/metabolismo , Linaje de la Célula , Células Dendríticas/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Células de Langerhans/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Monocitos/metabolismo , Piel/metabolismo , Ratones Endogámicos C57BL
4.
ACS Omega ; 9(7): 8434-8438, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405470

RESUMEN

Tobacco smoking and human papillomavirus infection are established etiological agents in the development of head and neck squamous cell carcinoma (HNSCC). The incidence and mortality of HNSCC are higher in men than women. To provide biochemical basis for sex differences, we tested the hypothesis that carcinogen treatment using dibenzo[def,p]chrysene, which is an environmental pollutant and tobacco smoke constituent, in the absence or presence of the mouse papillomavirus infection results in significantly higher levels of DNA damage in the oral cavity in male than in female mice. However, the results of the present investigation do not support our hypothesis since we found that females were more susceptible to carcinogen-induced covalent DNA damage than males independent of the viral infection. Since DNA damage represents only a single-step in the carcinogenesis process, additional factors may contribute to sex differences in humans.

5.
Pathogens ; 12(12)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133335

RESUMEN

Human papillomavirus (HPV)-induced oropharyngeal cancer now exceeds HPV-induced cervical cancer, with a noticeable sex bias. Although it is well established that women have a more proficient immune system, it remains unclear whether immune control of oral papillomavirus infections differs between sexes. In the current study, we use genetically modified mice to target CCR2 and Stat1 pathways, with the aim of investigating the role of both innate and adaptive immune responses in clearing oral papillomavirus, using our established papillomavirus (MmuPV1) infection model. Persistent oral MmuPV1 infection was detected in Rag1ko mice with T and B cell deficiencies. Meanwhile, other tested mice were susceptible to MmuPV1 infections but were able to clear the virus. We found sex differences in key myeloid cells, including macrophages, neutrophils, and dendritic cells in the infected tongues of wild type and Stat1ko mice but these differences were not observed in CCR2ko mice. Intriguingly, we also observed a sex difference in anti-MmuPV1 E4 antibody levels, especially for two IgG isotypes: IgG2b and IgG3. However, we found comparable numbers of interferon-gamma-producing CD8 T cells stimulated by E6 and E7 in both sexes. These findings suggest that males and females may use different components of innate and adaptive immune responses to control papillomavirus infections in the MmuPV1 mouse model. The observed sex difference in immune responses, especially in myeloid cells including dendritic cell (DC) subsets, may have potential diagnostic and prognostic values for HPV-associated oropharyngeal cancer.

6.
J Virol ; 96(16): e0070322, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35920658

RESUMEN

We have established a mouse papillomavirus (MmuPV1) model that induces both cutaneous and mucosal infections and cancers. In the current study, we use this model to test our hypothesis that passive immunization using a single neutralizing monoclonal antibody can protect both cutaneous and mucosal sites at different time points after viral inoculation. We conducted a series of experiments involving the administration of either a neutralizing monoclonal antibody, MPV.A4, or control monoclonal antibodies to both outbred and inbred athymic mice. Three clinically relevant mucosal sites (lower genital tract for females and anus and tongue for both males and females) and two cutaneous sites (muzzle and tail) were tested. At the termination of the experiments, all tested tissues were harvested for virological analyses. Significantly lower levels of viral signals were detected in the MPV.A4-treated female mice up to 6 h post-viral inoculation compared to those in the isotype control. Interestingly, males displayed partial protection when they received MPV.A4 at the time of viral inoculation, even though they were completely protected when receiving MPV.A4 at 24 h before viral inoculation. We detected MPV.A4 in the blood starting at 1 h and up to 8 weeks postadministration in some mice. Parallel to these in vivo studies, we conducted in vitro neutralization using a mouse keratinocyte cell line and observed complete neutralization up to 8 h post-viral inoculation. Thus, passive immunization with a monoclonal neutralizing antibody can protect against papillomavirus infection at both cutaneous and mucosal sites and is time dependent. IMPORTANCE This is the first study testing a single monoclonal neutralizing antibody (MPV.A4) by passive immunization against papillomavirus infections at both cutaneous and mucosal sites in the same host in the mouse papillomavirus model. We demonstrated that MPV.A4 administered before viral inoculation can protect both male and female athymic mice against MmuPV1 infections at cutaneous and mucosal sites. MPV.A4 also offers partial protection at 6 h post-viral inoculation in female mice. MPV.A4 can be detected in the blood from 1 h to 8 weeks after intraperitoneal (i.p.) injection. Interestingly, males were only partially protected when they received MPV.A4 at the time of viral inoculation. The failed protection in males was due to the absence of neutralizing MPV.A4 at the infected sites. Our findings suggest passive immunization with a single monoclonal neutralizing antibody can protect against diverse papillomavirus infections in a time-dependent manner in mice.


Asunto(s)
Infecciones por Papillomavirus , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Femenino , Inmunización Pasiva , Masculino , Ratones , Ratones Endogámicos BALB C , Papillomaviridae , Infecciones por Papillomavirus/prevención & control
7.
Viruses ; 14(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35632722

RESUMEN

Contraceptives such as Depo-medroxyprogesterone (DMPA) are used by an estimated 34 million women worldwide. DMPA has been associated with increased risk of several viral infections including Herpes simplex virus-2 (HSV-2) and Human immunodeficiency virus (HIV). In the current study, we used the mouse papillomavirus (MmuPV1) anogenital infection model to test two hypotheses: (1) contraceptives such as DMPA increase the susceptibility of the anogenital tract to viral infection and (2) long-term contraceptive administration induces more advanced disease at the anogenital tract. DMPA treatments of both athymic nude mice and heterozygous NU/J (Foxn1nu/+) but ovariectomized mice led to a significantly increased viral load at the anogenital tract, suggesting that endogenous sex hormones were involved in increased viral susceptibility by DMPA treatment. Consistent with previous reports, DMPA treatment suppressed host anti-viral activities at the lower genital tract. To test the impact of long-term contraceptive treatment on the MmuPV1-infected lower genital tract, we included two other treatments in addition to DMPA: 17ß-estradiol and a non-hormone based contraceptive Cilostazol (CLZ, Pletal). Viral infections were monitored monthly up to nine months post infection by qPCR. The infected vaginal and anal tissues were harvested and further examined by histological, virological, and immunological analyses. Surprisingly, we did not detect a significantly higher grade of histology in animals in the long-term DMPA and 17ß-estradiol treated groups when compared to the control groups in the athymic mice we tested. Therefore, although DMPA promotes initial papillomavirus infections in the lower genital tract, the chronic administration of DMPA does not promote cancer development in the infected tissues in our mouse model.


Asunto(s)
Infecciones por Papillomavirus , Animales , Femenino , Humanos , Ratones , Anticonceptivos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Estradiol , Medroxiprogesterona , Acetato de Medroxiprogesterona/efectos adversos , Ratones Desnudos , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/patología
8.
Vaccines (Basel) ; 9(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34960247

RESUMEN

Human papillomavirus (HPV) 16 capsids have been chosen as a DNA delivery vehicle in many studies. Our preliminary studies suggest that HPV58 capsids could be better vehicles than HPV16 capsids to deliver encapsidated DNA in vitro and in vivo. In the current study, we compared HPV16, HPV58, and the cottontail rabbit papillomavirus (CRPV) capsids either as L1/L2 VLPs or pseudoviruses (PSVs) to deliver externally attached GFP-expressing DNA. Both rabbit and human cells were used to test whether there was a species-specific effect. DNA delivery efficiency was determined by quantifying either GFP-expressing cell populations or mean fluorescent intensities (MFI) by flow cytometry. Interestingly, CRPV and 58-VLPs and PSVs were significantly more efficient at delivering attached DNA when compared to 16-VLPs and PSVs. A capsid/DNA ratio of 2:1 showed the highest efficiency for delivering external DNA. The PSVs with papillomavirus DNA genomes also showed higher efficiency than those with irrelevant plasmid DNA. HPV16L1/58L2 hybrid VLPs displayed increased efficiency compared to HPV58L1/16L2 VLPs, suggesting that L2 may play a critical role in the delivery of attached DNA. Additionally, we demonstrated that VLPs increased in vivo infectivity of CRPV DNA in rabbits. We conclude that choosing CRPV or 58 capsids to deliver external DNA could improve DNA uptake in in vitro and in vivo models.

9.
Viruses ; 13(9)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34578405

RESUMEN

Papillomavirus L1 and L2, the major and minor capsid proteins, play significant roles in viral assembly, entry, and propagation. In the current study, we investigate the impact of L1 and L2 on viral life cycle and tumor growth with a newly established mouse papillomavirus (MmuPV1) infection model. MmuPV1 L1 knockout, L2 knockout, and L1 plus L2 knockout mutant genomes (designated as L1ATGko-4m, L2ATGko, and L1-L2ATGko respectively) were generated. The mutants were examined for their ability to generate lesions in athymic nude mice. Viral activities were examined by qPCR, immunohistochemistry (IHC), in situ hybridization (ISH), and transmission electron microscopy (TEM) analyses. We demonstrated that viral DNA replication and tumor growth occurred at both cutaneous and mucosal sites infected with each of the mutants. Infections involving L1ATGko-4m, L2ATGko, and L1-L2ATGko mutant genomes generally resulted in smaller tumor sizes compared to infection with the wild type. The L1 protein was absent in L1ATGko-4m and L1-L2ATGko mutant-treated tissues, even though viral transcripts and E4 protein expression were robust. Therefore, L1 is not essential for MmuPV1-induced tumor growth, and this finding parallels our previous observations in the rabbit papillomavirus model. Very few viral particles were detected in L2ATGko mutant-infected tissues. Interestingly, the localization of L1 in lesions induced by L2ATGko was primarily cytoplasmic rather than nuclear. The findings support the hypothesis that the L2 gene influences the expression, location, transport, and assembly of the L1 protein in vivo.


Asunto(s)
Proteínas de la Cápside/fisiología , Membrana Mucosa/virología , Proteínas Oncogénicas Virales/fisiología , Papillomaviridae/fisiología , Piel/virología , Animales , Proteínas de la Cápside/genética , Transformación Celular Viral , ADN Viral/biosíntesis , Femenino , Genoma Viral , Ratones , Ratones Desnudos , Mutación , Proteínas Oncogénicas Virales/genética , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Replicación Viral
10.
Cell ; 184(14): 3812-3828.e30, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34214472

RESUMEN

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.


Asunto(s)
Antígenos CD28/deficiencia , Patrón de Herencia/genética , Papillomaviridae/fisiología , Piel/virología , Linfocitos T/inmunología , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/inmunología , Niño , Endopeptidasas/metabolismo , Femenino , Genes Recesivos , Células HEK293 , Homocigoto , Humanos , Inmunidad Humoral , Memoria Inmunológica , Células Jurkat , Queratinocitos/patología , Masculino , Ratones Endogámicos C57BL , Oncogenes , Papiloma/patología , Papiloma/virología , Linaje , Señales de Clasificación de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Chem Biol Interact ; 333: 109321, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33186600

RESUMEN

HPV infections in the oral cavity that progress to cancer are on the increase in the USA. Model systems to study co-factors for progression of these infections are lacking as HPVs are species-restricted and cannot grow in preclinical animal models. We have recently developed a mouse papillomavirus (MmuPV1) oral mucosal infection model that provides opportunities to test, for the first time, the hypothesis that tobacco carcinogens are co-factors that can impact the progression of oral papillomas to squamous cell carcinoma (SCC). Four cohorts of mice per sex were included: (1) infected with MmuPV1 and treated orally with DMSO-saline; (2) infected with MmuPV1 and treated orally with the tobacco carcinogen, dibenzo[def,p]chrysene (DBP); (3) uninfected and treated orally with DMSO-saline, and (4) uninfected and treated orally with DBP. Oral swabs were collected monthly for subsequent assessment of viral load. Oral tissues were collected for in situ viral DNA/RNA detection, viral protein staining, and pathological assessment for hyperplasia, papillomas and SCC at study termination. We observed increased rates of SCC in oral tissue infected with MmuPV1 and treated with DBP when compared to mice treated with DBP or virus individually, each of which showed minimal disease. Virally-infected epithelium showed strong levels of viral DNA/RNA and viral protein E4/L1 staining. In contrast, areas of SCC showed reduced viral DNA staining indicative of lower viral copy per nucleus but strong RNA signals. Several host markers (p120 ctn, p53, S100A9) were also examined in the mouse oral tissues; of particular significance, p120 ctn discriminated normal un-infected epithelium from SCC or papilloma epithelium. In summary, we have confirmed that our infection model is an excellent platform to assess the impact of co-factors including tobacco carcinogens for oral PV cancerous progression. Our findings can assist in the design of novel prevention/treatment strategies for HPV positive vs. HPV negative disease.


Asunto(s)
Crisenos/toxicidad , Progresión de la Enfermedad , Contaminantes Ambientales/toxicidad , Neoplasias de la Boca/patología , Nicotiana/efectos adversos , Papillomaviridae/fisiología , Humo/efectos adversos , Animales , Carcinogénesis/efectos de los fármacos , Femenino , Genoma Viral/genética , Masculino , Ratones , Neoplasias de la Boca/virología , Papillomaviridae/genética , Caracteres Sexuales , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
12.
Comp Med ; 70(5): 312-322, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32972486

RESUMEN

Epstein-Barr Virus (EBV) is a γ-herpesvirus which infects over 90% of the adult human population. Most notably, this virus causes infectious mononucleosis but it is also associated with cancers such as Hodgkin and Burkitt lymphoma. EBV is a species-specific virus and has been studied in many animal models, including nonhuman primates, guinea pigs, humanized mice, and tree shrews. However, none of these animal models are considered the "gold standard" for EBV research. Recently, rabbits have emerged as a viable alternative model, as they are susceptible to EBV infection. In addition, the EBV infection progresses after immune suppression with cyclosporine A (CsA), modeling the reactivation of EBV after latency. We sought to refine this model for acute or active EBV infections by performing antibody-mediated depletion of certain immune subsets in rabbits. Fourteen 16 to 20-wk old, NZW rabbits were intravenously inoculated with EBV and concurrently treated with either anti-CD4 T-cell antibody, anti-pan-T-cell antibody (anti CD45), CSA, or, as a control, anti-HPV antibody. Rabbits that received the depleting antibodies were treated with CsA 3 times at a dose of 15 mg/kg SC once per day for 4 d starting at the time of EBV inoculation then the dose was increased to 20 mg/kg SC twice weekly for 2 wk. Weights, temperatures, and clinical signs were monitored, and rabbits were anesthetized once weekly for blood collection. When compared with the control group, anti-CD4-treated rabbits had fewer clinical signs and displayed higher levels of viral DNA via qPCR in splenocytes; however, flow cytometry results showed only a partial depletion of CD4 T-cells. Treatment with anti-pan-T-cell antibody did not result in noticeable T-cell depletion. These data suggest the EBV-infected rabbit is a promising model for testing antiviral medications and prophylactic vaccines for EBV.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Animales , Anticuerpos Antivirales , ADN Viral , Cobayas , Herpesvirus Humano 4/genética , Inmunidad , Ratones , Conejos
13.
Emerg Microbes Infect ; 8(1): 1108-1121, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31340720

RESUMEN

Human papillomaviruses (HPV) contribute to most cervical cancers and are considered to be sexually transmitted. However, papillomaviruses are often found in cancers of internal organs, including the stomach, raising the question as to how the viruses gain access to these sites. A possible connection between blood transfusion and HPV-associated disease has not received much attention. Here we show, in rabbit and mouse models, that blood infected with papillomavirus yields infections at permissive sites with detectable viral DNA, RNA transcripts, and protein products. The rabbit skin tumours induced via blood infection displayed decreased expression of SLN, TAC1, MYH8, PGAM2, and APOBEC2 and increased expression of SDRC7, KRT16, S100A9, IL36G, and FABP9, as seen in tumours induced by local infections. Furthermore, we demonstrate that blood from infected mice can transmit the infection to uninfected animals. Finally, we demonstrate the presence of papillomavirus infections and virus-induced hyperplasia in the stomach tissues of animals infected via the blood. These results indicate that blood transmission could be another route for papillomavirus infection, implying that the human blood supply, which is not screened for papillomaviruses, could be a potential source of HPV infection as well as subsequent cancers in tissues not normally associated with the viruses.


Asunto(s)
Sangre/virología , Papillomaviridae/fisiología , Infecciones por Papillomavirus/transmisión , Infecciones por Papillomavirus/virología , Animales , ADN Viral/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , Infecciones por Papillomavirus/sangre , Infecciones por Papillomavirus/genética , Conejos
14.
Antiviral Res ; 154: 158-165, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29653131

RESUMEN

The DNA papillomaviruses infect squamous epithelium and can cause persistent, benign and sometimes malignant hyperproliferative lesions. Effective antiviral drugs to treat human papillomavirus (HPV) infection are lacking and here we investigate the anti-papillomavirus activity of novel epigenetic targeting drugs, BET bromodomain inhibitors. Bromodomain and Extra-Terminal domain (BET) proteins are host proteins which regulate gene transcription, they bind acetylated lysine residues in histones and non-histone proteins via bromodomains, functioning as scaffold proteins in the formation of transcriptional complexes at gene regulatory regions. The BET protein BRD4 has been shown to be involved in the papillomavirus life cycle, as a co-factor for viral E2 and also mediating viral partitioning in some virus types. We set out to study the activity of small molecule BET bromodomain inhibitors in models of papillomavirus infection. Several BET inhibitors reduced HPV11 E1ˆE4 mRNA expression in vitro and topical therapeutic administration of an exemplar compound I-BET762, abrogated CRPV cutaneous wart growth in rabbits, demonstrating translation of anti-viral effects to efficacy in vivo. Additionally I-BET762 markedly reduced viability of HPV16 infected W12 cells compared to non-infected C33A cells. The molecular mechanism for the cytotoxicity to W12 cells is unknown but may be through blocking viral-dependent cell-survival factors. We conclude that these effects, across multiple papillomavirus types and in vivo, highlight the potential to target BET bromodomains to treat HPV infection.


Asunto(s)
Benzodiazepinas/uso terapéutico , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Proteínas Nucleares/antagonistas & inhibidores , Papillomaviridae/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Verrugas/tratamiento farmacológico , Acetilación , Animales , Línea Celular Tumoral , Supervivencia Celular , Epigénesis Genética , Lisina , Masculino , Papillomaviridae/genética , Dominios Proteicos , Conejos , Verrugas/virología
15.
Sci Rep ; 7(1): 16932, 2017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29208932

RESUMEN

Mouse papillomavirus has shown broad tissue tropism in nude mice. Previous studies have tested cutaneous infections in different immunocompromised and immunocompetent mouse strains. In the current study, we examined mucosal infection in several immunocompetent and immunocompromised mouse strains. Viral DNA was monitored periodically by Q-PCR of lavage samples. Immunohistochemistry and in situ hybridization were used to determine viral capsid protein and viral DNA respectively. All athymic nude mouse strains showed active infections at both cutaneous and mucosal sites. Interestingly, NOD/SCID mice, which have a deficiency in T, B, and NK cells, showed minimal disease at cutaneous sites but developed persistent infection at the mucosal sites including those of the anogenital region and the oral cavity. Three strains of immunocompetent mice supported mucosal infections. Infections of the lower genital tract in heterozygous (immunocompetent) mice of the NU/J strain progressed to high grade dysplasia and to carcinoma in situ. Anti-MmuPV1 neutralizing antibodies were detected in the sera of all immunocompetent animals. Our findings demonstrate that the mucosae may be the preferred sites for this virus in mice. The mouse model is expected to be a valuable model for the study of mucosal papillomavirus disease, progression, and host immune control.


Asunto(s)
Enfermedades de la Boca/virología , Membrana Mucosa/virología , Infecciones por Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , ADN Viral/análisis , Modelos Animales de Enfermedad , Femenino , Heterocigoto , Homocigoto , Interferón-alfa/genética , Ratones Pelados , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones Mutantes , Enfermedades de la Boca/inmunología , Enfermedades de la Boca/patología , Membrana Mucosa/patología , Neoplasias Experimentales/virología , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/patología , Enfermedades Cutáneas Infecciosas/virología
16.
Viruses ; 9(9)2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28867783

RESUMEN

The mouse papillomavirus (MmuPV1) was first reported in 2011 and has since become a powerful research tool. Through collective efforts from different groups, significant progress has been made in the understanding of molecular, virological, and immunological mechanisms of MmuPV1 infections in both immunocompromised and immunocompetent hosts. This mouse papillomavirus provides, for the first time, the opportunity to study papillomavirus infections in the context of a small common laboratory animal for which abundant reagents are available and for which many strains exist. The model is a major step forward in the study of papillomavirus disease and pathology. In this review, we summarize studies using MmuPV1 over the past six years and share our perspectives on the value of this unique model system. Specifically, we discuss viral pathogenesis in cutaneous and mucosal tissues as well as in different mouse strains, immune responses to the virus, and local host-restricted factors that may be involved in MmuPV1 infections and associated disease progression.


Asunto(s)
Modelos Animales de Enfermedad , Ratones/virología , Papillomaviridae/patogenicidad , Infecciones por Papillomavirus/virología , Inmunidad Adaptativa , Animales , Linfocitos B/inmunología , Linfocitos B/virología , Progresión de la Enfermedad , Humanos , Inmunidad Innata , Ratones/inmunología , Enfermedades de la Boca/virología , Membrana Mucosa/patología , Membrana Mucosa/virología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/patología , Análisis de Secuencia de ARN , Piel/virología , Neoplasias Cutáneas/virología , Linfocitos T/inmunología , Linfocitos T/virología , Tropismo Viral
17.
J Gen Virol ; 98(10): 2520-2529, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28942760

RESUMEN

We report secondary cutaneous infections in the mouse papillomavirus (MmuPV1)/mouse model. Our previous study demonstrated that cutaneous MmuPV1 infection could spread to mucosal sites. Recently, we observed that mucosal infections could also spread to various cutaneous sites including the back, tail, muzzle and mammary tissues. The secondary site lesions were positive for viral DNA, viral capsid protein and viral particles as determined by in situ hybridization, immunohistochemistry and transmission electron microscopy analyses, respectively. We also demonstrated differential viral production and tumour growth at different secondarily infected skin sites. For example, fewer viral particles were detected in the least susceptible back tissues when compared with those in the infected muzzle and tail, although similar amounts of viral DNA were detected. Follow-up studies demonstrated that significantly lower amounts of viral DNA were packaged in the back lesions. Lavages harvested from the oral cavity and lower genital tracts were equally infectious at both cutaneous and mucosal sites, supporting the broad tissue tropism of this papillomavirus. Importantly, two secondary skin lesions on the forearms of two mice displayed a malignant phenotype at about 9.5 months post-primary infection. Therefore, MmuPV1 induces not only dysplasia at mucosal sites such as the vagina, anus and oral cavity but also skin carcinoma at cutaneous sites. These findings demonstrate that MmuPV1 mucosal infection can be spread to cutaneous sites and suggest that the model could serve a useful role in the study of the viral life cycle and pathogenesis of papillomavirus.

18.
J Virol ; 90(14): 6314-25, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147749

RESUMEN

UNLABELLED: At least 15 high-risk human papillomaviruses (HPVs) are linked to anogenital preneoplastic lesions and cancer. Currently, there are three licensed prophylactic HPV vaccines based on virus-like particles (VLPs) of the L1 major capsid protein from HPV-2, -4, or -9, including the AS04-adjuvanted HPV-16/18 L1 vaccine. The L2 minor capsid protein contains HPV-neutralizing epitopes that are well conserved across numerous high-risk HPVs. Therefore, the objective of our study was to assess the capacity to broaden vaccine-mediated protection using AS04-adjuvanted vaccines based on VLP chimeras of L1 with one or two L2 epitopes. Several chimeric VLPs were constructed by inserting L2 epitopes within the DE loop and/or C terminus of L1. Based on the shape, yield, size, and immunogenicity, one of seven chimeras was selected for further evaluation in mouse and rabbit challenge models. The chimeric VLP consisted of HPV-18 L1 with insertions of HPV-33 L2 (amino acid residues 17 to 36; L1 DE loop) and HPV-58 L2 (amino acid residues 56 to 75; L1 C terminus). This chimeric L1/L2 VLP vaccine induced persistent immune responses and protected against all of the different HPVs evaluated (HPV-6, -11, -16, -31, -35, -39, -45, -58, and -59 as pseudovirions or quasivirions) in both mouse and rabbit challenge models. The degree and breadth of protection in the rabbit were further enhanced when the chimeric L1/L2 VLP was formulated with the L1 VLPs from the HPV-16/18 L1 vaccine. Therefore, the novel HPV-18 L1/L2 chimeric VLP (alone or in combination with HPV-16 and HPV-18 L1 VLPs) formulated with AS04 has the potential to provide broad protective efficacy in human subjects. IMPORTANCE: From evaluations in human papillomavirus (HPV) protection models in rabbits and mice, our study has identified a prophylactic vaccine with the potential to target a wide range of HPVs linked to anogenital cancer. The three currently licensed vaccines contain virus-like particles (VLPs) of the L1 major capsid protein from two, four, or nine different HPVs. Rather than increasing the diversity of L1 VLPs, this vaccine contains VLPs based on a recombinant chimera of two highly conserved neutralizing epitopes from the L2 capsid protein inserted into L1. Our study demonstrated that the chimeric L1/L2 VLP is an effective vehicle for displaying two different L2 epitopes and can be used in a quantity equivalent to what is used in the licensed vaccines. Hence, using the chimeric L1/L2 VLP may be a more cost-effective approach for vaccine formulation than adding different VLPs for each HPV.


Asunto(s)
Protección Cruzada/inmunología , Papillomaviridae/inmunología , Infecciones por Papillomavirus/inmunología , Vacunas contra Papillomavirus/administración & dosificación , Proteínas Recombinantes de Fusión/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Proteínas Oncogénicas Virales/inmunología , Infecciones por Papillomavirus/prevención & control , Infecciones por Papillomavirus/virología , Vacunas contra Papillomavirus/genética , Vacunas contra Papillomavirus/inmunología , Conejos , Homología de Secuencia de Aminoácido , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología
19.
Virology ; 488: 73-80, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26609937

RESUMEN

In 2010, a new mouse papillomavirus, MmuPV1, was discovered in a colony of NMRI- Foxn1(nu)/Foxn1(nu) athymic mice in India. This finding was significant because it was the first papillomavirus to be found in a laboratory mouse. In this paper we report successful infections of both dorsal and ventral surfaces of the rostral tongues of outbred athymic nude mice. We also report the observation that the base of the tongue, the area of the tongue often targeted by cancer-associated high-risk papillomavirus infections in humans, is especially susceptible to infection. A suitable animal model for the study of oral papillomavirus infections, co-infections, and cancers has long been sought. The work presented here suggests that such a model is now at hand.


Asunto(s)
Mucosa Bucal/patología , Mucosa Bucal/virología , Papillomaviridae/fisiología , Lengua/patología , Lengua/virología , Animales , Histocitoquímica , Inmunohistoquímica , Ratones , Ratones Desnudos , Microscopía
20.
Vaccine ; 33(42): 5553-5563, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26382603

RESUMEN

Vaccination with the minor capsid protein L2, notably the 17-36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17-36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum±MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17-36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Proteínas de la Cápside/inmunología , Proteínas Oncogénicas Virales/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Dependovirus/inmunología , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Papillomavirus Humano 16 , Ratones , Ratones Endogámicos BALB C , Papillomaviridae/inmunología , Conejos , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA