Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664406

RESUMEN

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

2.
Environ Sci Technol ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38323876

RESUMEN

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

3.
Environ Sci Atmos ; 4(2): 265-274, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371605

RESUMEN

Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions. This process requires supersaturation of gas-phase ammonia and nitric acid with respect to ammonium nitrate saturation ratios. Urban environments are inhomogeneous. In the troposphere, vertical mixing is fast, and aerosols may experience rapidly changing temperatures. In areas close to sources of pollution, gas-phase concentrations can also be highly variable. In this work we present results from nucleation experiments at -10 °C and 5 °C in the CLOUD chamber at CERN. We verify, using a kinetic model, how long supersaturation is likely to be sustained under urban conditions with temperature and concentration inhomogeneities, and the impact it may have on the particle size distribution. We show that rapid and strong temperature changes of 1 °C min-1 are needed to cause rapid growth of nanoparticles through ammonium nitrate formation. Furthermore, inhomogeneous emissions of ammonia in cities may also cause rapid growth of particles.

4.
Environ Sci Technol ; 58(3): 1601-1614, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38185880

RESUMEN

Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.


Asunto(s)
Contaminantes Atmosféricos , Monoterpenos Bicíclicos , Ozono , Compuestos Orgánicos Volátiles , Monoterpenos/química , Nitratos/química , Aerosoles/análisis , Compuestos Orgánicos Volátiles/química
5.
Sci Adv ; 9(36): eadi5297, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682996

RESUMEN

Biogenic vapors form new particles in the atmosphere, affecting global climate. The contributions of monoterpenes and isoprene to new particle formation (NPF) have been extensively studied. However, sesquiterpenes have received little attention despite a potentially important role due to their high molecular weight. Via chamber experiments performed under atmospheric conditions, we report biogenic NPF resulting from the oxidation of pure mixtures of ß-caryophyllene, α-pinene, and isoprene, which produces oxygenated compounds over a wide range of volatilities. We find that a class of vapors termed ultralow-volatility organic compounds (ULVOCs) are highly efficient nucleators and quantitatively determine NPF efficiency. When compared with a mixture of isoprene and monoterpene alone, adding only 2% sesquiterpene increases the ULVOC yield and doubles the formation rate. Thus, sesquiterpene emissions need to be included in assessments of global aerosol concentrations in pristine climates where biogenic NPF is expected to be a major source of cloud condensation nuclei.

6.
Environ Sci Technol ; 57(31): 11572-11582, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37496264

RESUMEN

Aromatic hydrocarbons (ArHCs) and oxygenated aromatic hydrocarbons (ArHC-OHs) are emitted from a variety of anthropogenic activities and are important precursors of secondary organic aerosol (SOA) in urban areas. Here, we analyzed and compared the composition of SOA formed from the oxidation of a mixture of aromatic VOCs by OH and NO3 radicals. The VOC mixture was composed of toluene (C7H8), p-xylene + ethylbenzene (C8H10), 1,3,5-trimethylbenzene (C9H12), phenol (C6H6O), cresol (C7H8O), 2,6-dimethylphenol (C8H10O), and 2,4,6-trimethylphenol (C9H12O) in a proportion where the aromatic VOCs were chosen to approximate day-time traffic-related emissions in Delhi, and the aromatic alcohols make up 20% of the mixture. These VOCs are prominent in other cities as well, including those influenced by biomass combustion. In the NO3 experiments, large contributions from CxHyOzN dimers (C15-C18) were observed, corresponding to fast SOA formation within 15-20 min after the start of chemistry. Additionally, the dimers were a mixture of different combinations of the initial VOCs, highlighting the importance of exploring SOAs from mixed VOC systems. In contrast, the experiments with OH radicals yielded gradual SOA mass formation, with CxHyOz monomers (C6-C9) being the dominant constituents. The evolution of SOA composition with time was tracked and a fast degradation of dimers was observed in the NO3 experiments, with concurrent formation of monomer species. The rates of dimer decomposition in NO3 SOA were ∼2-3 times higher compared to those previously determined for α-pinene + O3 SOA, highlighting the dependence of particle-phase reactions on VOC precursors and oxidants. In contrast, the SOA produced in the OH experiments did not dramatically change over the same time frame. No measurable effects of humidity were observed on the composition and evolution of SOA.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/química , Aerosoles/análisis , Tolueno
7.
Nat Commun ; 14(1): 3347, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291087

RESUMEN

The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO2) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 - 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO2-NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer.


Asunto(s)
Atmósfera , Óxido Nítrico , Monoterpenos , Oxidación-Reducción , Aerosoles
8.
Environ Sci Atmos ; 3(1): 115-123, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36743126

RESUMEN

OH scavengers are extensively used in studies of secondary organic aerosol (SOA) because they create an idealized environment where only a single oxidation pathway is occurring. Here, we present a detailed molecular characterization of SOA produced from α-pinene + O3 with a variety of OH scavengers using the extractive electrospray time-of-flight mass spectrometer in our atmospheric simulation chamber, which is complemented by characterizing the gas phase composition in flow reactor experiments. Under our experimental conditions, radical chemistry largely controls the composition of SOA. Besides playing their desired role in suppressing the reaction of α-pinene with OH, OH scavengers alter the reaction pathways of radicals produced from α-pinene + O3. This involves changing the HO2 : RO2 ratio, the identity of the RO2 radicals present, and the RO2 major sinks. As a result, the use of the OH scavengers has significant effects on the composition of SOA, including inclusions of scavenger molecules in SOA, the promotion of fragmentation reactions, and depletion of dimers formed via α-pinene RO2-RO2 reactions. To date fragmentation reactions and inclusion of OH scavenger products into secondary organic aerosol have not been reported in atmospheric simulation chamber studies. Therefore, care should be considered if and when to use an OH scavenger during experiments.

10.
Environ Sci Technol ; 56(22): 15290-15297, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318938

RESUMEN

97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 µg/m3). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA. However, conventional PMF requires extensive human labor, preventing the implementation of SA for routine monitoring applications. This study proposes the source finder real-time (SoFi RT, Datalystica Ltd.) approach for efficient retrieval of OA sources. The results generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich. Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date trustable information on timescales useful to policymakers and air quality modelers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Ciudades , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis
11.
Environ Int ; 166: 107325, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716508

RESUMEN

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

12.
Nat Geosci ; 15(3): 196-202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341076

RESUMEN

Aerosols play an important yet uncertain role in modulating the radiation balance of the sensitive Arctic atmosphere. Organic aerosol is one of the most abundant, yet least understood, fractions of the Arctic aerosol mass. Here we use data from eight observatories that represent the entire Arctic to reveal the annual cycles in anthropogenic and biogenic sources of organic aerosol. We show that during winter, the organic aerosol in the Arctic is dominated by anthropogenic emissions, mainly from Eurasia, which consist of both direct combustion emissions and long-range transported, aged pollution. In summer, the decreasing anthropogenic pollution is replaced by natural emissions. These include marine secondary, biogenic secondary and primary biological emissions, which have the potential to be important to Arctic climate by modifying the cloud condensation nuclei properties and acting as ice-nucleating particles. Their source strength or atmospheric processing is sensitive to nutrient availability, solar radiation, temperature and snow cover. Our results provide a comprehensive understanding of the current pan-Arctic organic aerosol, which can be used to support modelling efforts that aim to quantify the climate impacts of emissions in this sensitive region.

13.
Sci Total Environ ; 818: 151800, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34813816

RESUMEN

Despite the fact that atmospheric particulate organic nitrogen (ON) can significantly affect human health, ecosystems and the earth's climate system, qualitative and quantitative chemical characterization of ON remains limited due to its chemical complexity. In this study, the Aerodyne soot particle - high-resolution time-of-flight aerosol mass spectrometer (SP-AMS) was deployed for ambient measurements in Nanjing, China. Positive matrix factorization (PMF) was applied to the ON data to quantify the sources of ON in submicron aerosols. The averaged ON concentration was 1.24 µg m-3, while the averaged total nitrogen (TN) in the aerosol was 20.26 µg m-3. From the PMF ON analysis, a 5-factor solution was selected as the most representative and interpretable solution for the investigated dataset, including oxygenated OA (OOAON), amine-related OAON (AMOAON), hydrocarbon-like OA (HOAON), industry OA (IOAON), and local primary OA (POAON) factors. The quantified ON ions were separated into families, including CxHN, CxHyNO, C3H<6N, CxH2x+2N, CxH2xN and Others, consistent with their contribution to each factor. The CxHyNO family mainly contributed to the OOAON factor and suggested the presence of amides or amino acids. The CxH2x+2N family likely mostly originated from amines only contributing to the AMOAON and HOAON factors. The IOAON and POAON factors were resolved due to significant tracers in the mass spectra. Further, compared with regular organic PMF analysis, PMF ON analysis gave more insights due to improved source separation and interpretability of the OA components, which could be a role model for further atmospheric ON research.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Ecosistema , Monitoreo del Ambiente , Humanos , Nitrógeno/análisis , Material Particulado/análisis
14.
Environ Sci Atmos ; 1(6): 434-448, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34604755

RESUMEN

Aerosol particles negatively affect human health while also having climatic relevance due to, for example, their ability to act as cloud condensation nuclei. Ultrafine particles (diameter D p < 100 nm) typically comprise the largest fraction of the total number concentration, however, their chemical characterization is difficult because of their low mass. Using an extractive electrospray time-of-flight mass spectrometer (EESI-TOF), we characterize the molecular composition of freshly nucleated particles from naphthalene and ß-caryophyllene oxidation products at the CLOUD chamber at CERN. We perform a detailed intercomparison of the organic aerosol chemical composition measured by the EESI-TOF and an iodide adduct chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols (FIGAERO-I-CIMS). We also use an aerosol growth model based on the condensation of organic vapors to show that the chemical composition measured by the EESI-TOF is consistent with the expected condensed oxidation products. This agreement could be further improved by constraining the EESI-TOF compound-specific sensitivity or considering condensed-phase processes. Our results show that the EESI-TOF can obtain the chemical composition of particles as small as 20 nm in diameter with mass loadings as low as hundreds of ng m-3 in real time. This was until now difficult to achieve, as other online instruments are often limited by size cutoffs, ionization/thermal fragmentation and/or semi-continuous sampling. Using real-time simultaneous gas- and particle-phase data, we discuss the condensation of naphthalene oxidation products on a molecular level.

15.
Environ Sci Technol ; 55(10): 6936-6943, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33961408

RESUMEN

Atmospheric secondary organic aerosol (SOA) undergoes chemical and physical changes when exposed to UV radiation, affecting the atmospheric lifetime of the involved molecules. However, these photolytic processes remain poorly constrained. Here, we present a study aimed at characterizing, at a molecular level and in real time, the chemical composition of α-pinene SOA exposed to UV-A light at 50% relative humidity in an atmospheric simulation chamber. Significant SOA mass loss is observed at high loadings (∼100 µg m-3), whereas the effect is less prevalent at lower loadings (∼20 µg m-3). For the vast majority of molecules measured by the extractive electrospray time-of-flight mass spectrometer, there is a fraction that is photoactive and decays when exposed to UV-A radiation and a fraction that appears photorecalcitrant. The molecules that are most photoactive contain between 4 and 6 oxygen atoms, while the more highly oxygenated compounds and dimers do not exhibit significant decay. Overall, photolysis results in a reduction of the volatility of SOA, which cannot be explained by simple evaporative losses but requires either a change in volatility related to changes in functional groups or a change in physical parameters (i.e., viscosity).


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , Fotólisis
16.
Environ Sci Technol ; 55(9): 5701-5710, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826309

RESUMEN

Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Carbón Mineral , Material Particulado/análisis , Agua
17.
Sci Adv ; 7(13)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33762335

RESUMEN

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).

18.
Environ Pollut ; 278: 116865, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714061

RESUMEN

Characteristics and sources of ambient particle elements in urban Beijing were studied by hourly observations in two size fractions (PM10 and PM2.5) during November and December 2017 using an online multi-element analyzer. The reconstructed oxide concentrations of 24 elements (from Al to Pb) comprise an appreciable fraction of PM10 and PM2.5, accounting for 37% and 17%, respectively on average. We demonstrate the benefit of using high-time-resolution chemical speciation data in achieving robust source apportionment of the total elemental PM10 (PM10el) and elemental PM2.5 (PM2.5el) mass using positive matrix factorization (PMF). Biomass burning, coal combustion, secondary sulfate, industry, non-exhaust traffic and dust were identified in both size fractions (with varying relative concentrations), which accounted on average for 4%, 12%, 5%, 2%, 14%, and 63%, respectively to the total PM10el, and 14%, 35%, 21%, 6%, 12% and 12%, respectively to the total PM2.5el. Biomass burning and coal combustion exhibited higher concentrations during haze episodes of the heating season. In contrast, secondary sulfate and industry contributed more to haze episodes during the non-heating season. The fractional contribution of dust was mostly high during clean days, while the fractional non-exhaust traffic emission contribution was similar throughout the measurement period. The non-exhaust traffic emissions contributed locally, while the remaining sources were dominated by neighboring areas. Furthermore, trajectory analysis showed that the origin of the industrial sources roughly agreed with the locations of the main point sources. Overall, this work provides detailed information on the characteristics of the elements during different haze events during heating and non-heating seasons.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
19.
Nat Commun ; 12(1): 300, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436593

RESUMEN

Organic peroxy radicals (RO2) play a pivotal role in the degradation of hydrocarbons. The autoxidation of atmospheric RO2 radicals produces highly oxygenated organic molecules (HOMs), including low-volatility ROOR dimers formed by bimolecular RO2 + RO2 reactions. HOMs can initiate and greatly contribute to the formation and growth of atmospheric particles. As a result, HOMs have far-reaching health and climate implications. Nevertheless, the structures and formation mechanism of RO2 radicals and HOMs remain elusive. Here, we present the in-situ characterization of RO2 and dimer structure in the gas-phase, using online tandem mass spectrometry analyses. In this study, we constrain the structures and formation pathway of several HOM-RO2 radicals and dimers produced from monoterpene ozonolysis, a prominent atmospheric oxidation process. In addition to providing insights into atmospheric HOM chemistry, this study debuts online tandem MS analyses as a unique approach for the chemical characterization of reactive compounds, e.g., organic radicals.

20.
PLoS One ; 15(11): e0233425, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33206642

RESUMEN

Ambient air pollution is one of the leading five health risks worldwide. One of the most harmful air pollutants is particulate matter (PM), which has different physical characteristics (particle size and number, surface area and morphology) and a highly complex and variable chemical composition. Our goal was first to comparatively assess the effects of exposure to PM regarding cytotoxicity, release of pro-inflammatory mediators and gene expression in human bronchial epithelia (HBE) reflecting normal and compromised health status. Second, we aimed at evaluating the impact of various PM components from anthropogenic and biogenic sources on the cellular responses. Air-liquid interface (ALI) cultures of fully differentiated HBE derived from normal and cystic fibrosis (CF) donor lungs were exposed at the apical cell surface to water-soluble PM filter extracts for 4 h. The particle dose deposited on cells was 0.9-2.5 and 8.8-25.4 µg per cm2 of cell culture area for low and high PM doses, respectively. Both normal and CF HBE show a clear dose-response relationship with increasing cytotoxicity at higher PM concentrations. The concurrently enhanced release of pro-inflammatory mediators at higher PM exposure levels links cytotoxicity to inflammatory processes. Further, the PM exposure deregulates genes involved in oxidative stress and inflammatory pathways leading to an imbalance of the antioxidant system. Moreover, we identify compromised defense against PM in CF epithelia promoting exacerbation and aggravation of disease. We also demonstrate that the adverse health outcome induced by PM exposure in normal and particularly in susceptible bronchial epithelia is magnified by anthropogenic PM components. Thus, including health-relevant PM components in regulatory guidelines will result in substantial human health benefits and improve protection of the vulnerable population.


Asunto(s)
Aerosoles/efectos adversos , Contaminantes Atmosféricos/efectos adversos , Fibrosis Quística/complicaciones , Células Epiteliales/patología , Inflamación/etiología , Estrés Oxidativo , Mucosa Respiratoria/patología , Células Cultivadas , Humanos , Inflamación/patología , Mediadores de Inflamación , Tamaño de la Partícula , Material Particulado/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA