Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
mBio ; 13(1): e0339421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012337

RESUMEN

Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.


Asunto(s)
Antioxidantes , Deinococcus , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Manganeso/metabolismo , Superóxidos/metabolismo , Superóxido Dismutasa/metabolismo , Envejecimiento
2.
Sci Rep ; 9(1): 11361, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31388021

RESUMEN

Exposure to chronic ionizing radiation (CIR) from nuclear power plant accidents, acts of terrorism, and space exploration poses serious threats to humans. Fungi are a group of highly radiation-resistant eukaryotes, and an understanding of fungal CIR resistance mechanisms holds the prospect of protecting humans. We compared the abilities of 95 wild-type yeast and dimorphic fungal isolates, representing diverse Ascomycota and Basidiomycota, to resist exposure to five environmentally-relevant stressors: CIR (long-duration growth under 36 Gy/h) and acute (10 kGy/h) ionizing radiation (IR), heavy metals (chromium, mercury), elevated temperature (up to 50 °C), and low pH (2.3). To quantify associations between resistances to CIR and these other stressors, we used correlation analysis, logistic regression with multi-model inference, and customized machine learning. The results suggest that resistance to acute IR in fungi is not strongly correlated with the ability of a given fungal isolate to grow under CIR. Instead, the strongest predictors of CIR resistance in fungi were resistance to chromium (III) and to elevated temperature. These results suggest fundamental differences between the mechanisms of resistance to chronic and acute radiation. Convergent evolution towards radioresistance among genetically distinct groups of organisms is considered here.


Asunto(s)
Cromo/toxicidad , Farmacorresistencia Fúngica , Hongos/fisiología , Rayos gamma/efectos adversos , Calor/efectos adversos , Estrés Fisiológico , Hongos/efectos de los fármacos , Hongos/metabolismo , Hongos/efectos de la radiación , Concentración de Iones de Hidrógeno , Mercurio/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA