Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(1): e35359, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38247244

RESUMEN

Vertebral compression fractures are one of the most severe clinical consequences of osteoporosis and the most common fragility fracture afflicting 570 and 1070 out of 100,000 men and women worldwide, respectively. Vertebroplasty (VP), a minimally invasive surgical procedure that involves the percutaneous injection of bone cement, is one of the most efficacious methods to stabilise osteoporotic vertebral compression fractures. However, postoperative fracture has been observed in up to 30% of patients following VP. Therefore, this study aims to investigate the effect of different injectable bone cement formulations on the stress distribution within the vertebrae and intervertebral discs due to VP and consequently recommend the optimal cement formulation. To achieve this, a 3D finite element (FE) model of the T11-L1 vertebral body was developed from computed tomography scan data of the spine. Osteoporotic bone was modeled by reducing the Young's modulus by 20% in the cortical bone and 74% in cancellous bone. The FE model was subjected to different physiological movements, such as extension, flexion, bending, and compression. The osteoporotic model caused a reduction in the average von Mises stress compared with the normal model in the T12 cancellous bone and an increment in the average von Mises stress value at the T12 cortical bone. The effects of VP using different formulations of a novel injectable bone cement were modeled by replacing a region of T12 cancellous bone with the materials. Due to the injection of the bone cement at the T12 vertebra, the average von Mises stresses on cancellous bone increased and slightly decreased on the cortical bone under all loading conditions. The novel class of bone cements investigated herein demonstrated an effective restoration of stress distribution to physiological levels within treated vertebrae, which could offer a potential superior alternative for VP surgery as their anti-osteoclastogenic properties could further enhance the appeal of their fracture treatment and may contribute to improved patient recovery and long-term well-being.


Asunto(s)
Fracturas por Compresión , Fracturas de la Columna Vertebral , Vertebroplastia , Masculino , Humanos , Femenino , Cementos para Huesos/farmacología , Análisis de Elementos Finitos , Fracturas por Compresión/cirugía , Cuerpo Vertebral , Fracturas de la Columna Vertebral/cirugía
2.
Biomolecules ; 13(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36671479

RESUMEN

Vertebral compression fractures are typical of osteoporosis and their treatment can require the injection of a cement through a minimally invasive procedure to restore vertebral body height. This study reports the development of an injectable calcium sulphate-based composite cement able to stimulate bone regeneration while inhibiting osteoclast bone resorption. To this aim, different types of strontium-containing mesoporous glass particles (Sr-MBG) were added to calcium sulphate powder to impart a pro-osteogenic effect, and the influence of their size and textural features on the cement properties was investigated. Anti-osteoclastogenic properties were conferred by incorporating into poly(lactic-co-glycolic)acid (PLGA) nanoparticles, a recombinant protein able to inhibit osteoclast activity (i.e., ICOS-Fc). Radiopaque zirconia nanoparticles (ZrO2) were also added to the formulation to visualize the cement injection under fluoroscopy. The measured cement setting times were suitable for the clinical practice, and static mechanical testing determined a compressive strength of ca. 8 MPa, comparable to that of human vertebral bodies. In vitro release experiments indicated a sustained release of ICOS-Fc and Sr2+ ions up to 28 days. Overall, the developed cement is promising for the treatment of vertebral compression fractures and has the potential to stimulate bone regeneration while releasing a biomolecule able to limit bone resorption.


Asunto(s)
Resorción Ósea , Fracturas por Compresión , Fracturas de la Columna Vertebral , Humanos , Fracturas por Compresión/tratamiento farmacológico , Fracturas de la Columna Vertebral/tratamiento farmacológico , Sulfato de Calcio , Cementos para Huesos/farmacología , Cementos para Huesos/uso terapéutico , Proteína Coestimuladora de Linfocitos T Inducibles
3.
Polymers (Basel) ; 14(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35267680

RESUMEN

In bone regenerative strategies, the controlled release of growth factors is one of the main aspects for successful tissue regeneration. Recent trends in the drug delivery field increased the interest in the development of biodegradable systems able to protect and transport active agents. In the present study, we designed degradable poly(lactic-co-glycolic)acid (PLGA) nanocarriers suitable for the release of Transforming Growth Factor-beta 1 (TGF-ß1), a key molecule in the management of bone cells behaviour. Spherical TGF-ß1-containing PLGA (PLGA_TGF-ß1) nanoparticles (ca.250 nm) exhibiting high encapsulation efficiency (ca.64%) were successfully synthesized. The TGF-ß1 nanocarriers were subsequently combined with type I collagen for the fabrication of nanostructured 3D printed scaffolds able to mimic the TGF-ß1 presence in the human bone extracellular matrix (ECM). The homogeneous hybrid formulation underwent a comprehensive rheological characterisation in view of 3D printing. The 3D printed collagen-based scaffolds (10 mm × 10 mm × 1 mm) successfully mimicked the TGF-ß1 presence in human bone ECM as assessed by immunohistochemical TGF-ß1 staining, covering ca.3.4% of the whole scaffold area. Moreover, the collagenous matrix was able to reduce the initial burst release observed in the first 24 h from about 38% for the PLGA_TGF-ß1 alone to 14.5%, proving that the nanocarriers incorporation into collagen allows achieving sustained release kinetics.

4.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572076

RESUMEN

Silica-based mesoporous systems have gained great interest in drug delivery applications due to their excellent biocompatibility and high loading capability. However, these materials face challenges in terms of pore-size limitations since they are characterized by nanopores ranging between 6-8 nm and thus unsuitable to host large molecular weight molecules such as proteins, enzymes and growth factors (GFs). In this work, for an application in the field of bone regeneration, large-pore mesoporous silicas (LPMSs) were developed to vehicle large biomolecules and release them under a pH stimulus. Considering bone remodeling, the proposed pH-triggered mechanism aims to mimic the release of GFs encased in the bone matrix due to bone resorption by osteoclasts (OCs) and the associated pH drop. To this aim, LPMSs were prepared by using 1,3,5-trimethyl benzene (TMB) as a swelling agent and the synthesis solution was hydrothermally treated and the influence of different process temperatures and durations on the resulting mesostructure was investigated. The synthesized particles exhibited a cage-like mesoporous structure with accessible pores of diameter up to 23 nm. LPMSs produced at 140 °C for 24 h showed the best compromise in terms of specific surface area, pores size and shape and hence, were selected for further experiments. Horseradish peroxidase (HRP) was used as model protein to evaluate the ability of the LPMSs to adsorb and release large biomolecules. After HRP-loading, LPMSs were coated with a pH-responsive polymer, poly(ethylene glycol) (PEG), allowing the release of the incorporated biomolecules in response to a pH decrease, in an attempt to mimic GFs release in bone under the acidic pH generated by the resorption activity of OCs. The reported results proved that PEG-coated carriers released HRP more quickly in an acidic environment, due to the protonation of PEG at low pH that catalyzes polymer hydrolysis reaction. Our findings indicate that LPMSs could be used as carriers to deliver large biomolecules and prove the effectiveness of PEG as pH-responsive coating. Finally, as proof of concept, a collagen-based suspension was obtained by incorporating PEG-coated LPMS carriers into a type I collagen matrix with the aim of designing a hybrid formulation for 3D-printing of bone scaffolds.


Asunto(s)
Colágeno Tipo I/química , Portadores de Fármacos/química , Peroxidasa de Rábano Silvestre/administración & dosificación , Impresión Tridimensional , Dióxido de Silicio/química , Derivados del Benceno/química , Liberación de Fármacos , Peroxidasa de Rábano Silvestre/farmacocinética , Concentración de Iones de Hidrógeno , Nanopartículas/química , Polietilenglicoles/química , Porosidad , Prueba de Estudio Conceptual , Andamios del Tejido
5.
Nanomaterials (Basel) ; 10(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867075

RESUMEN

Bone-tissue regeneration induced by biomimetic bioactive materials is the most promising approach alternative to the clinical ones used to treat bone loss caused by trauma or diseases such as osteoporosis. The goal is to design nanostructured bioactive constructs able to reproduce the physiological environment: By mimicking the natural features of bone tissue, the cell behavior during the regeneration process may be addressed. At present, 3D-printing technologies are the only techniques able to design complex structures avoiding constraints of final shape and porosity. However, this type of biofabrication requires complex optimization of biomaterial formulations in terms of specific rheological and mechanical properties while preserving high biocompatibility. In this work, we combined nano-sized mesoporous bioactive glasses enriched with strontium ions with type I collagen, to formulate a bioactive ink for 3D-printing technologies. Moreover, to avoid the premature release of strontium ions within the crosslinking medium and to significantly increase the material mechanical and thermal stability, we applied an optimized chemical treatment using ethanol-dissolved genipin solutions. The high biocompatibility of the hybrid system was confirmed by using MG-63 and Saos-2 osteoblast-like cell lines, further highlighting the great potential of the innovative nanocomposite for the design of bone-like scaffolds.

6.
Artículo en Inglés | MEDLINE | ID: mdl-28983481

RESUMEN

Clinical trials have demonstrated that heparan sulfate (HS) could be used as a therapeutic agent for the treatment of inflammatory diseases. Its anti-inflammatory effect makes it suitable for the development of biomimetic innovative strategies aiming at modulating stem cells behavior toward a pro-regenerative phenotype in case of injury or inflammation. Here, we propose collagen type I meshes fabricated by solvent casting and further crosslinked with HS (HS-Col) to create a biomimetic environment resembling the extracellular matrix of soft tissue. HS-Col meshes were tested for their capability to provide physical support to stem cells' growth, maintain their phenotypes and immunosuppressive potential following inflammation. HS-Col effect on stem cells was investigated in standard conditions as well as in an inflammatory environment recapitulated in vitro through a mix of pro-inflammatory cytokines (tumor necrosis factor-α and interferon-gamma; 20 ng/ml). A significant increase in the production of molecules associated with immunosuppression was demonstrated in response to the material and when cells were grown in presence of pro-inflammatory stimuli, compared to bare collagen membranes (Col), leading to a greater inhibitory potential when mesenchymal stem cells were exposed to stimulated peripheral blood mononuclear cells. Our data suggest that the presence of HS is able to activate the molecular machinery responsible for the release of anti-inflammatory cytokines, potentially leading to a faster resolution of inflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA