Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Clin Invest ; 134(9)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530364

RESUMEN

G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here, we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and is selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX- and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is coexpressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the proresolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10- or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein's function. Thus, GPR37L1 in SGCs offers a therapeutic target for the protection of neuropathy and chronic pain.


Asunto(s)
Ácidos Docosahexaenoicos , Ganglios Espinales , Neuroglía , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ganglios Espinales/metabolismo , Homeostasis , Ratones Noqueados , Ratones Transgénicos , Neuralgia/metabolismo , Neuralgia/genética , Neuralgia/patología , Neuroglía/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106084

RESUMEN

G protein coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR and its function remains largely unknown. Here we report that GPR37L1 transcript is highly expressed compared to all known GPCRs in mouse and human dorsal root ganglia (DRGs) and selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following diabetes and chemotherapy by streptozotocin and paclitaxel resulted in downregulations of surface GPR37L1 in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptom (mechanical allodynia), whereas overexpression of Gpr37l1 in mouse DRGs can reverse neuropathic pain. Notably, GPR37L1 is co-expressed and coupled with potassium channels in SGCs. We found striking species differences in potassium channel expression in SGCs, with predominant expression of KCNJ10 and KCNJ3 in mouse and human SGCs, respectively. GPR37L1 regulates the surface expression and function of KCNJ10 and KCNJ3. We identified the pro-resolving lipid mediator maresin 1 (MaR1) as a GPR37L1 ligand. MaR1 increases KCNJ10/KCNJ3-mediated potassium influx in SGCs via GPR37L1. MaR1 protected chemotherapy-induced suppression of KCNJ13/KCNJ10 expression and function in SGCs. Finally, genetic analysis revealed that the GPR37L1-E296K variant is associated with increased chronic pain risk by destabilizing the protein. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.

3.
Neuron ; 111(17): 2709-2726.e9, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37348508

RESUMEN

Programmed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory. Intraventricular administration of anti-mouse PD-1 monoclonal antibody (RMP1-14) potentiated learning and memory. Selective deletion of PD-1 in excitatory neurons (but not microglia) also enhances LTP and memory. Traumatic brain injury (TBI) impairs learning and memory, which is rescued by Pdcd1 deletion or intraventricular PD-1 blockade. Conversely, re-expression of Pdcd1 in PD-1-deficient hippocampal neurons suppresses memory and LTP. Exogenous PD-L1 suppresses learning/memory in mice and the excitability of mouse and NHP hippocampal neurons through PD-1. Notably, neuronal activation suppresses PD-L1 secretion, and PD-L1/PD-1 signaling is distinctly regulated by learning and TBI. Thus, conditions that reduce PD-L1 levels or PD-1 signaling could promote memory in both physiological and pathological conditions.


Asunto(s)
Antígeno B7-H1 , Lesiones Traumáticas del Encéfalo , Humanos , Antígeno B7-H1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , Aprendizaje , Hipocampo/metabolismo , Anticuerpos Monoclonales/metabolismo , Neuronas/metabolismo
4.
Brain Behav Immun ; 111: 298-311, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150265

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is the most prevalent neurological complication of chemotherapy for cancer, and has limited effective treatment options. Autologous conditioned serum (ACS) is an effective biologic therapy used by intra-articular injection for patients with osteoarthritis. However, ACS has not been systematically tested in the treatment of peripheral neuropathies such as CIPN. It has been generally assumed that the analgesic effect of this biologic therapy results from augmented concentrations of anti-inflammatory cytokines and growth factors. Here we report that a single intrathecal injection of human conditioned serum (hCS) produced long-lasting inhibition of paclitaxel chemotherapy-induced neuropathic pain (mechanical allodynia) in mice, without causing motor impairment. Strikingly, the analgesic effect of hCS in our experiments was maintained even 8 weeks after the treatment, compared with non-conditioned human serum (hNCS). Furthermore, the hCS transfer-induced pain relief in mice was fully recapitulated by rat or mouse CS transfer to mice of both sexes, indicating cross-species and cross-sex effectiveness. Mechanistically, CS treatment blocked the chemotherapy-induced glial reaction in the spinal cord and improved nerve conduction. Compared to NCS, CS contained significantly higher concentrations of anti-inflammatory and pro-resolving mediators, including IL-1Ra, TIMP-1, TGF-ß1, and resolvins D1/D2. Intrathecal injection of anti-TGF-ß1 and anti-Il-1Ra antibody transiently reversed the analgesic action of CS. Nanoparticle tracking analysis revealed that rat conditioned serum contained a significantly greater number of exosomes than NCS. Importantly, the removal of exosomes by high-speed centrifugation largely diminished the CS-produced pain relief, suggesting a critical involvement of small vesicles (exosomes) in the beneficial effects of CS. Together, our findings demonstrate that intrathecal CS produces a remarkable resolution of neuropathic pain mediated through a combination of small vesicles/exosomes and neuroimmune/neuroglial modulation.


Asunto(s)
Antineoplásicos , Exosomas , Neuralgia , Masculino , Femenino , Ratones , Ratas , Humanos , Animales , Exosomas/metabolismo , Neuralgia/metabolismo , Paclitaxel/efectos adversos , Hiperalgesia/metabolismo , Médula Espinal/metabolismo , Analgésicos/farmacología , Antineoplásicos/efectos adversos
5.
Front Immunol ; 14: 1124356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845137

RESUMEN

Excessive inflammation has been implicated in autism spectrum disorder (ASD), but the underlying mechanisms have not been fully studied. SHANK3 is a synaptic scaffolding protein and mutations of SHANK3 are involved in ASD. Shank3 expression in dorsal root ganglion sensory neurons also regulates heat pain and touch. However, the role of Shank3 in the vagus system remains unknown. We induced systemic inflammation by lipopolysaccharide (LPS) and measured body temperature and serum IL-6 levels in mice. We found that homozygous and heterozygous Shank3 deficiency, but not Shank2 and Trpv1 deficiency, aggravates hypothermia, systemic inflammation (serum IL-6 levels), and sepsis mortality in mice, induced by lipopolysaccharide (LPS). Furthermore, these deficits can be recapitulated by specific deletion of Shank3 in Nav1.8-expressing sensory neurons in conditional knockout (CKO) mice or by selective knockdown of Shank3 or Trpm2 in vagal sensory neurons in nodose ganglion (NG). Mice with Shank3 deficiency have normal basal core temperature but fail to adjust body temperature after perturbations with lower or higher body temperatures or auricular vagus nerve stimulation. In situ hybridization with RNAscope revealed that Shank3 is broadly expressed by vagal sensory neurons and this expression was largely lost in Shank3 cKO mice. Mechanistically, Shank3 regulates the expression of Trpm2 in NG, as Trpm2 but not Trpv1 mRNA levels in NG were significantly reduced in Shank3 KO mice. Our findings demonstrated a novel molecular mechanism by which Shank3 in vagal sensory neurons regulates body temperature, inflammation, and sepsis. We also provided new insights into inflammation dysregulation in ASD.


Asunto(s)
Trastorno del Espectro Autista , Sepsis , Canales Catiónicos TRPM , Ratones , Animales , Temperatura Corporal , Lipopolisacáridos , Interleucina-6 , Células Receptoras Sensoriales , Inflamación , Proteínas de Microfilamentos , Proteínas del Tejido Nervioso/genética
6.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36430912

RESUMEN

Inflammation is known to cause pain, and pain is of one of the cardinal signs of inflammation. Mounting evidence suggests that acute inflammation also resolves pain through specialized pro-resolving mediators (SPMs) and macrophage signaling. GPR37 is expressed by neurons and oligodendrocytes in the brain and has been implicated in multiple disorders, such as demyelination, Parkinson's disease, stroke, and cancer. Recent studies have demonstrated that GPR37 is expressed by macrophages and confers protection against infection by bacteria and parasites. Furthermore, GPR37 promotes the resolution of inflammatory pain and infection-induced pain, as the duration of pain after tissue injury and infection is prolonged in mice lacking Gpr37. Mechanistically, activation of GPR37 enhances macrophage phagocytosis, and Gpr37-deficient macrophages exhibit dysregulations of pro-inflammatory and anti-inflammatory cytokines, switching from M2- to M1-like phenotypes. We also discuss novel ligands of GPR37, including neuroprotectin D1 (NPD1), a SPM derived from docosahexaenoic acid (DHA), and bone-derived hormone osteocalcin (OCN), which can suppress oligodendrocyte differentiation and myelination. NPD1 stimulates macrophage phagocytosis via GPR37 and exhibits potent analgesic actions in various animal models of inflammatory and neuropathic pain. Targeting GPR37 may lead to novel therapeutics for treating inflammation, infection, pain, and neurological diseases.


Asunto(s)
Inflamación , Neuralgia , Animales , Ratones , Inflamación/prevención & control , Fagocitosis , Macrófagos , Antiinflamatorios/farmacología , Receptores Acoplados a Proteínas G
7.
Front Immunol ; 12: 787565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950149

RESUMEN

The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 µm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Interleucina-23/toxicidad , Fibras Nerviosas Amielínicas/efectos de los fármacos , Nociceptores/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Dolor/inducido químicamente , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Humanos , Interleucina-17/metabolismo , Luz , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Fibras Nerviosas Amielínicas/metabolismo , Nociceptores/metabolismo , Optogenética , Dolor/genética , Dolor/metabolismo , Dolor/fisiopatología , Caracteres Sexuales , Células THP-1 , Canales Catiónicos TRPV/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Neuron ; 109(17): 2691-2706.e5, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34473953

RESUMEN

Although sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones. IL-23 requires C-fiber nociceptors and TRPV1 to produce pain but does not directly activate nociceptor neurons. Notably, IL-23 requires IL-17A release from macrophages to evoke mechanical pain in females. Low-dose IL-17A directly activates nociceptors and induces mechanical pain only in females. Finally, deletion of estrogen receptor subunit α (ERα) in TRPV1+ nociceptors abolishes IL-23- and IL-17-induced pain in females. These findings demonstrate that the IL-23/IL-17A/TRPV1 axis regulates female-specific mechanical pain via neuro-immune interactions. Our study also reveals sex dimorphism at both immune and neuronal levels.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Macrófagos/metabolismo , Dolor Nociceptivo/metabolismo , Nociceptores/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Interleucina-17/farmacología , Interleucina-23/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/metabolismo , Fibras Nerviosas Amielínicas/fisiología , Dolor Nociceptivo/fisiopatología , Nociceptores/efectos de los fármacos , Nociceptores/fisiología , Factores Sexuales , Transducción de Señal
9.
Nat Commun ; 12(1): 4558, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315904

RESUMEN

Patients with advanced stage cancers frequently suffer from severe pain as a result of bone metastasis and bone destruction, for which there is no efficacious treatment. Here, using multiple mouse models of bone cancer, we report that agonists of the immune regulator STING (stimulator of interferon genes) confer remarkable protection against cancer pain, bone destruction, and local tumor burden. Repeated systemic administration of STING agonists robustly attenuates bone cancer-induced pain and improves locomotor function. Interestingly, STING agonists produce acute pain relief through direct neuronal modulation. Additionally, STING agonists protect against local bone destruction and reduce local tumor burden through modulation of osteoclast and immune cell function in the tumor microenvironment, providing long-term cancer pain relief. Finally, these in vivo effects are dependent on host-intrinsic STING and IFN-I signaling. Overall, STING activation provides unique advantages in controlling bone cancer pain through distinct and synergistic actions on nociceptors, immune cells, and osteoclasts.


Asunto(s)
Neoplasias Óseas/complicaciones , Dolor en Cáncer/etiología , Dolor en Cáncer/inmunología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Analgésicos/farmacología , Animales , Neoplasias Óseas/sangre , Dolor en Cáncer/sangre , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Fémur/diagnóstico por imagen , Fémur/efectos de los fármacos , Fémur/patología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Proteínas de Homeodominio/metabolismo , Hiperalgesia/complicaciones , Interferones/sangre , Interferones/metabolismo , Masculino , Neoplasias Mamarias Animales/complicaciones , Proteínas de la Membrana/agonistas , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Osteogénesis/efectos de los fármacos , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Xantonas/farmacología
10.
Nat Commun ; 12(1): 1704, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731716

RESUMEN

GPR37 was discovered more than two decades ago, but its biological functions remain poorly understood. Here we report a protective role of GPR37 in multiple models of infection and sepsis. Mice lacking Gpr37 exhibited increased death and/or hypothermia following challenge by lipopolysaccharide (LPS), Listeria bacteria, and the mouse malaria parasite Plasmodium berghei. Sepsis induced by LPS and Listeria in wild-type mice is protected by artesunate (ARU) and neuroprotectin D1 (NPD1), but the protective actions of these agents are lost in Gpr37-/- mice. Notably, we found that ARU binds to GPR37 in macrophages and promotes phagocytosis and clearance of pathogens. Moreover, ablation of macrophages potentiated infection, sepsis, and their sequelae, whereas adoptive transfer of NPD1- or ARU-primed macrophages reduced infection, sepsis, and pain-like behaviors. Our findings reveal physiological actions of ARU in host cells by activating macrophages and suggest that GPR37 agonists may help to treat sepsis, bacterial infections, and malaria.


Asunto(s)
Macrófagos/metabolismo , Dolor/prevención & control , Receptores Acoplados a Proteínas G/metabolismo , Sepsis/prevención & control , Traslado Adoptivo , Animales , Artesunato/metabolismo , Artesunato/farmacología , Artesunato/uso terapéutico , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Lipopolisacáridos/toxicidad , Listeria monocytogenes/patogenicidad , Macrófagos/efectos de los fármacos , Macrófagos/patología , Macrófagos/trasplante , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación del Acoplamiento Molecular , Dolor/inmunología , Dolor/mortalidad , Fagocitosis/efectos de los fármacos , Plasmodium berghei/patogenicidad , Receptores Acoplados a Proteínas G/deficiencia , Sepsis/inmunología , Sepsis/mortalidad , Sepsis/terapia
11.
J Clin Invest ; 130(7): 3603-3620, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484460

RESUMEN

Emerging immune therapy, such as with the anti-programmed cell death-1 (anti-PD-1) monoclonal antibody nivolumab, has shown efficacy in tumor suppression. Patients with terminal cancer suffer from cancer pain as a result of bone metastasis and bone destruction, but how PD-1 blockade affects bone cancer pain remains unknown. Here, we report that mice lacking Pdcd1 (Pd1-/-) demonstrated remarkable protection against bone destruction induced by femoral inoculation of Lewis lung cancer cells. Compared with WT mice, Pd1-/- mice exhibited increased baseline pain sensitivity, but the development of bone cancer pain was compromised in Pd1-/- mice. Consistently, these beneficial effects in Pd1-/- mice were recapitulated by repeated i.v. applications of nivolumab in WT mice, even though nivolumab initially increased mechanical and thermal pain. Notably, PD-1 deficiency or nivolumab treatment inhibited osteoclastogenesis without altering tumor burden. PD-L1 and CCL2 are upregulated within the local tumor microenvironment, and PD-L1 promoted RANKL-induced osteoclastogenesis through JNK activation and CCL2 secretion. Bone cancer upregulated CCR2 in primary sensory neurons, and CCR2 antagonism effectively reduced bone cancer pain. Our findings suggest that, despite a transient increase in pain sensitivity following each treatment, anti-PD-1 immunotherapy could produce long-term benefits in preventing bone destruction and alleviating bone cancer pain by suppressing osteoclastogenesis.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Carcinoma Pulmonar de Lewis , Proteínas de Neoplasias , Nivolumab/farmacología , Osteoclastos/metabolismo , Receptor de Muerte Celular Programada 1 , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/genética , Dolor en Cáncer/metabolismo , Dolor en Cáncer/patología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Femenino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoclastos/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo
12.
Sci Transl Med ; 12(531)2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075945

RESUMEN

Emerging immunotherapies with monoclonal antibodies against programmed cell death protein-1 (PD-1) have shown success in treating cancers. However, PD-1 signaling in neurons is largely unknown. We recently reported that dorsal root ganglion (DRG) primary sensory neurons express PD-1 and activation of PD-1 inhibits neuronal excitability and pain. Opioids are mainstay treatments for cancer pain, and morphine produces antinociception via mu opioid receptor (MOR). Here, we report that morphine antinociception and MOR signaling require neuronal PD-1. Morphine-induced antinociception after systemic or intrathecal injection was compromised in Pd1 -/- mice. Morphine antinociception was also diminished in wild-type mice after intravenous or intrathecal administration of nivolumab, a clinically used anti-PD-1 monoclonal antibody. In mouse models of inflammatory, neuropathic, and cancer pain, spinal morphine antinociception was compromised in Pd1 -/- mice. MOR and PD-1 are coexpressed in sensory neurons and their axons in mouse and human DRG tissues. Morphine produced antinociception by (i) suppressing calcium currents in DRG neurons, (ii) suppressing excitatory synaptic transmission, and (iii) inducing outward currents in spinal cord neurons; all of these actions were impaired by PD-1 blockade in mice. Loss of PD-1 also enhanced opioid-induced hyperalgesia and tolerance and potentiates opioid-induced microgliosis and long-term potentiation in the spinal cord in mice. Last, intrathecal infusion of nivolumab inhibited intrathecal morphine-induced antinociception in nonhuman primates. Our findings demonstrate that PD-1 regulates opioid receptor signaling in nociceptive neurons, leading to altered opioid-induced antinociception in rodents and nonhuman primates.


Asunto(s)
Analgésicos Opioides , Roedores , Analgésicos Opioides/farmacología , Animales , Hiperalgesia/tratamiento farmacológico , Ratones , Morfina/farmacología , Primates , Médula Espinal
13.
J Neurosci ; 39(35): 6848-6864, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31270160

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) remains a pressing clinical problem; however, our understanding of sexual dimorphism in CIPN remains unclear. Emerging studies indicate a sex-dimorphic role of Toll-like receptor 4 (TLR4) in driving neuropathic pain. In this study, we examined the role of TLR9 in CIPN induced by paclitaxel in WT and Tlr9 mutant mice of both sexes. Baseline pain sensitivity was not affected in either Tlr9 mutant male or female mice. Intraplantar and intrathecal injection of the TLR9 agonist ODN 1826 induced mechanical allodynia in both sexes of WT and Tlr4 KO mice but failed to do so in Tlr9 mutant mice. Moreover, Trpv1 KO or C-fiber blockade by resiniferatoxin failed to affect intraplantar ODN 1826-induced mechanical allodynia. Interestingly, the development of paclitaxel-evoked mechanical allodynia was attenuated by TLR9 antagonism or Tlr9 mutation only in male mice. Paclitaxel-induced CIPN caused macrophage infiltration to DRGs in both sexes, and this infiltration was not affected by Tlr9 mutation. Paclitaxel treatment also upregulated TNF and CXCL1 in macrophage cultures and DRG tissues in both sexes, but these changes were compromised by Tlr9 mutation in male animals. Intraplantar adoptive transfer of paclitaxel-activated macrophages evoked mechanical allodynia in both sexes, which was compromised by Tlr9 mutation or by treatment with TLR9 inhibitor only in male animals. Finally, TLR9 antagonism reduced paclitaxel-induced mechanical allodynia in female nude mice (T-cell and B-cell deficient). Together, these findings reveal sex-dimorphic macrophage TLR9 signaling in chemotherapy-induced neuropathic pain.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect in cancer patients undergoing clinical chemotherapy treatment regimens. The role of sex dimorphism with regards to the mechanisms of CIPN and analgesia against CIPN remains unclear. Previous studies have found that the infiltration of immune cells, such as macrophages into DRGs and their subsequent activation promote CIPN. Interestingly, the contribution of microglia to CIPN appears to be limited. Here, we show that macrophage TLR9 signaling promotes CIPN in male mice only. This study suggests that pathways in macrophages may be sex-dimorphic in CIPN. Our findings provide new insights into the role of macrophage signaling mechanisms underlying sex dimorphism in CIPN, which may inspire the development of more precise and effective therapies.


Asunto(s)
Antineoplásicos/efectos adversos , Hiperalgesia/metabolismo , Macrófagos/metabolismo , Neuralgia/metabolismo , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Femenino , Hiperalgesia/inducido químicamente , Hiperalgesia/genética , Masculino , Ratones , Neuralgia/inducido químicamente , Neuralgia/genética , Dimensión del Dolor , Umbral del Dolor , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/genética , Receptor Toll-Like 9/genética
14.
J Clin Invest ; 128(8): 3568-3582, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010619

RESUMEN

The mechanisms of pain induction by inflammation have been extensively studied. However, the mechanisms of pain resolution are not fully understood. Here, we report that GPR37, expressed by macrophages (MΦs) but not microglia, contributes to the resolution of inflammatory pain. Neuroprotectin D1 (NPD1) and prosaptide TX14 increase intracellular Ca2+ (iCa2+) levels in GPR37-transfected HEK293 cells. NPD1 and TX14 also bind to GPR37 and cause GPR37-dependent iCa2+ increases in peritoneal MΦs. Activation of GPR37 by NPD1 and TX14 triggers MΦ phagocytosis of zymosan particles via calcium signaling. Hind paw injection of pH-sensitive zymosan particles not only induces inflammatory pain and infiltration of neutrophils and MΦs, but also causes GPR37 upregulation in MΦs, phagocytosis of zymosan particles and neutrophils by MΦs in inflamed paws, and resolution of inflammatory pain in WT mice. Mice lacking Gpr37 display deficits in MΦ phagocytic activity and delayed resolution of inflammatory pain. Gpr37-deficient MΦs also show dysregulations of proinflammatory and antiinflammatory cytokines. MΦ depletion delays the resolution of inflammatory pain. Adoptive transfer of WT but not Gpr37-deficient MΦs promotes the resolution of inflammatory pain. Our findings reveal a previously unrecognized role of GPR37 in regulating MΦ phagocytosis and inflammatory pain resolution.


Asunto(s)
Macrófagos Peritoneales/inmunología , Dolor/inmunología , Fagocitosis , Receptores Acoplados a Proteínas G/inmunología , Animales , Ácidos Docosahexaenoicos/genética , Ácidos Docosahexaenoicos/inmunología , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Macrófagos Peritoneales/patología , Ratones , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/patología , Dolor/inducido químicamente , Dolor/genética , Dolor/patología , Receptores Acoplados a Proteínas G/genética , Regulación hacia Arriba , Zimosan/toxicidad
15.
Front Pharmacol ; 9: 412, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765320

RESUMEN

Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 µg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 µg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.

16.
Neurosci Bull ; 34(1): 22-41, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29333591

RESUMEN

The voltage-gated Na+ channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na+ currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na+ currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na+ currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7/inmunología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Animales , Biotina/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Células HEK293 , Humanos , Hibridomas/química , Hiperalgesia/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/química , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/uso terapéutico , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología
17.
J Mol Neurosci ; 63(3-4): 422-430, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29090425

RESUMEN

Primary sensory afferent neurons detect environmental and painful stimuli at their peripheral termini. A group of transient receptor potential ion channels (TRPs) are expressed in these neurons and constitute sensor molecules for the stimuli such as thermal, mechanical, and chemical insults. We examined whether a mouse sensory neuronal line, N18D3, shows the sensory TRP expressions and their functionality. In Ca2+ imaging and electrophysiology with these cells, putative TRPV4-mediated responses were observed. TRPV4-specific sensory modalities including sensitivity to a specific agonist, hypotonicity, or an elevated temperature were reproduced in N18D3 cells. Electrophysiological and pharmacological profiles conformed to those from native TRPV4 of primarily cultured neurons. The TRPV4 expression in N18D3 was also confirmed by RT-PCR and Western blot analyses. Thus, N18D3 cells may represent TRPV4-expressing sensory neurons. Further, using this cell lines, we discovered a novel synthetic TRPV4-specific agonist, MLV-0901. These results suggest that N18D3 is a reliable cell line for functional and pharmacological TRPV4 assays. The chemical information from the novel agonist will contribute to TRPV4-targeting drug design.


Asunto(s)
Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Agonismo Parcial de Drogas , Células HEK293 , Humanos , Ligandos , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Endogámicos ICR , Cultivo Primario de Células/normas , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Canales Catiónicos TRPV/genética
18.
Nat Commun ; 7: 12531, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27538456

RESUMEN

Mechanisms of acute pain transition to chronic pain are not fully understood. Here we demonstrate an active role of ß-arrestin 2 (Arrb2) in regulating spinal cord NMDA receptor (NMDAR) function and the duration of pain. Intrathecal injection of the mu-opioid receptor agonist [D-Ala(2), NMe-Phe(4), Gly-ol(5)]-enkephalin produces paradoxical behavioural responses: early-phase analgesia and late-phase mechanical allodynia which requires NMDAR; both phases are prolonged in Arrb2 knockout (KO) mice. Spinal administration of NMDA induces GluN2B-dependent mechanical allodynia, which is prolonged in Arrb2-KO mice and conditional KO mice lacking Arrb2 in presynaptic terminals expressing Nav1.8. Loss of Arrb2 also results in prolongation of inflammatory pain and neuropathic pain and enhancement of GluN2B-mediated NMDA currents in spinal lamina IIo not lamina I neurons. Finally, spinal over-expression of Arrb2 reverses chronic neuropathic pain after nerve injury. Thus, spinal Arrb2 may serve as an intracellular gate for acute to chronic pain transition via desensitization of NMDAR.


Asunto(s)
Dolor Crónico/patología , Neuralgia/patología , Neuronas/metabolismo , Traumatismos de los Nervios Periféricos/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Sustancia Gelatinosa/metabolismo , Arrestina beta 2/metabolismo , Analgésicos Opioides/farmacología , Animales , Dolor Crónico/etiología , Modelos Animales de Enfermedad , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Humanos , Hiperalgesia/inducido químicamente , Hiperalgesia/patología , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , N-Metilaspartato/farmacología , Neuralgia/etiología , Neuronas/efectos de los fármacos , Traumatismos de los Nervios Periféricos/etiología , Receptores Opioides mu/antagonistas & inhibidores , Asta Dorsal de la Médula Espinal/citología , Asta Dorsal de la Médula Espinal/metabolismo , Sustancia Gelatinosa/citología , Factores de Tiempo , Arrestina beta 2/genética
19.
Nat Med ; 21(11): 1326-31, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26479925

RESUMEN

Mechanical allodynia, induced by normally innocuous low-threshold mechanical stimulation, represents a cardinal feature of neuropathic pain. Blockade or ablation of high-threshold, small-diameter unmyelinated group C nerve fibers (C-fibers) has limited effects on mechanical allodynia. Although large, myelinated group A fibers, in particular Aß-fibers, have previously been implicated in mechanical allodynia, an A-fiber-selective pharmacological blocker is still lacking. Here we report a new method for targeted silencing of A-fibers in neuropathic pain. We found that Toll-like receptor 5 (TLR5) is co-expressed with neurofilament-200 in large-diameter A-fiber neurons in the dorsal root ganglion (DRG). Activation of TLR5 with its ligand flagellin results in neuronal entry of the membrane-impermeable lidocaine derivative QX-314, leading to TLR5-dependent blockade of sodium currents, predominantly in A-fiber neurons of mouse DRGs. Intraplantar co-application of flagellin and QX-314 (flagellin/QX-314) dose-dependently suppresses mechanical allodynia after chemotherapy, nerve injury, and diabetic neuropathy, but this blockade is abrogated in Tlr5-deficient mice. In vivo electrophysiology demonstrated that co-application of flagellin/QX-314 selectively suppressed Aß-fiber conduction in naive and chemotherapy-treated mice. TLR5-mediated Aß-fiber blockade, but not capsaicin-mediated C-fiber blockade, also reduced chemotherapy-induced ongoing pain without impairing motor function. Finally, flagellin/QX-314 co-application suppressed sodium currents in large-diameter human DRG neurons. Thus, our findings provide a new tool for targeted silencing of Aß-fibers and neuropathic pain treatment.


Asunto(s)
Anestésicos Locales/farmacología , Flagelina/farmacología , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/genética , Lidocaína/análogos & derivados , Fibras Nerviosas Mielínicas/efectos de los fármacos , Neuralgia/genética , Neuronas/efectos de los fármacos , Receptor Toll-Like 5/genética , Adulto , Anciano , Animales , Antineoplásicos/toxicidad , Capsaicina/farmacología , Neuropatías Diabéticas/complicaciones , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Lidocaína/farmacología , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Amielínicas/efectos de los fármacos , Neuralgia/etiología , Neuralgia/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Paclitaxel/toxicidad , Traumatismos de los Nervios Periféricos/complicaciones , Fármacos del Sistema Sensorial/farmacología
20.
J Neurosci ; 33(33): 13425-30, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23946399

RESUMEN

It is well established that activation of NMDARs plays an essential role in spinal cord synaptic plasticity (i.e., central sensitization) and pain hypersensitivity after tissue injury. Despite prominent expression of NMDARs in DRG primary sensory neurons, the unique role of peripheral NMDARs in regulating intrinsic neuronal excitability and pain sensitivity is not well understood, in part due to the lack of selective molecular tools. To address this problem, we used Advillin-Cre driver to delete the NR1 subunit of NMDARs selectively in DRG neurons. In NR1 conditional knock-out (NR1-cKO) mice, NR1 expression is absent in DRG neurons but remains normal in spinal cord neurons; NMDA-induced currents are also eliminated in DRG neurons of these mice. Surprisingly, NR1-cKO mice displayed mechanical and thermal hypersensitivity compared with wild-type littermates. NR1-deficient DRG neurons show increased excitability, as indicated by increased frequency of action potentials, and enhanced excitatory synaptic transmission in spinal cord slices, as indicated by increased frequency of miniature EPSCs. This hyperexcitability can be reproduced by the NMDAR antagonist APV and by Ca(2+)-activated slow conductance K(+) (SK) channel blocker apamin. Furthermore, NR1-positive DRG neurons coexpress SK1/SK2 and apamin-sensitive afterhyperpolarization currents are elevated by NMDA and suppressed by APV in these neurons. Our findings reveal the hitherto unsuspected role of NMDARs in controlling the intrinsic excitability of primary sensory neurons possibly via Ca(2+)-activated SK channels. Our results also call attention to potential opposing effects of NMDAR antagonists as a treatment for pain and other neurological disorders.


Asunto(s)
Proteínas Portadoras/metabolismo , Hiperalgesia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ganglios Espinales/metabolismo , Ratones , Ratones Noqueados , Dolor/metabolismo , Técnicas de Placa-Clamp , Receptores de N-Metil-D-Aspartato , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA