Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Neuro Oncol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456228

RESUMEN

BACKGROUND: Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS: lncRNAs induced by hypoxia in GSCs were identified by RNAseq. LUCAT1 expression was assessed by qPCR, RNAseq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, TCGA, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNAseq, Western blot, immunohistochemistry, co-IP, ChIP, ChIPseq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS: A new isoform of Lucat1 is induced by HIF1α and NRF2 in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS: A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.

2.
Mol Cell ; 83(23): 4334-4351.e7, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979586

RESUMEN

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N6-methyladenosine (m6A) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated m6A levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the m6A demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA m6A demethylation in the nucleus. ALKBH5 critically regulated ferroptosis through m6A modulation and YTH N6-methyladenosine RNA binding protein (YTHDF2)-mediated decay of the glutamate-cysteine ligase modifier subunit (GCLM). Pharmacologic targeting of ALKBH5 augmented the anti-tumor efficacy of EGFR and GCLM inhibitors, supporting an EGFR-ALKBH5-GCLM oncogenic axis. Collectively, EGFR reprograms the epitranscriptomic landscape through nuclear retention of the ALKBH5 demethylase to protect against ferroptosis, offering therapeutic paradigms for the treatment of lethal cancers.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Receptores ErbB , Ferroptosis , Glioblastoma , Humanos , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Receptores ErbB/genética , Ferroptosis/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , ARN Mensajero/genética
4.
Cancer Cell ; 41(9): 1621-1636.e8, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37595587

RESUMEN

Brain metastasis of lung cancer causes high mortality, but the exact mechanisms underlying the metastasis remain unclear. Here we report that vascular pericytes derived from CD44+ lung cancer stem cells (CSCs) in lung adenocarcinoma (ADC) potently cause brain metastases through the G-protein-coupled receptor 124 (GPR124)-enhanced trans-endothelial migration (TEM). CD44+ CSCs in perivascular niches generate the majority of vascular pericytes in lung ADC. CSC-derived pericyte-like cells (Cd-pericytes) exhibit remarkable TEM capacity to effectively intravasate into the vessel lumina, survive in the circulation, extravasate into the brain parenchyma, and then de-differentiate into tumorigenic CSCs to form metastases. Cd-pericytes uniquely express GPR124 that activates Wnt7-ß-catenin signaling to enhance TEM capacity of Cd-pericytes for intravasation and extravasation, two critical steps during tumor metastasis. Furthermore, selective disruption of Cd-pericytes, GPR124, or the Wnt7-ß-catenin signaling markedly reduces brain and liver metastases of lung ADC. Our findings uncover an unappreciated cellular and molecular paradigm driving tumor metastasis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Encefálicas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/secundario , beta Catenina , Neoplasias Encefálicas/secundario , Cadmio , Receptores de Hialuranos , Pulmón , Neoplasias Pulmonares/patología , Pericitos , Receptores Acoplados a Proteínas G
5.
Stem Cells ; 41(8): 762-774, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37280108

RESUMEN

Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides. Here we selected a 7-amino acid peptide, AWEFYFP, which was independently isolated in both the in vitro and in vivo screens and demonstrated that it was able to target GSCs over differentiated glioma cells and non-neoplastic brain cells. When conjugated to Cyanine 5.5 and intravenously injected into mice with intracranially xenografted glioblastoma, the peptide localized to the site of the tumor, demonstrating intracranial tumor targeting specificity. Immunoprecipitation of the peptide with GSC proteins revealed Cadherin 2 as the glioblastoma cell surface receptor targeted by the peptides. Peptide targeting of Cadherin 2 on GSCs was confirmed through ELISA and in vitro binding analysis. Interrogation of glioblastoma databases demonstrated that Cadherin 2 expression correlated with tumor grade and survival. These results confirm that phage display can be used to isolate unique tumor-targeting peptides specific for glioblastoma. Furthermore, analysis of these cell specific peptides can lead to the discovery of cell specific receptor targets that may serve as the focus of future theragnostic tumor-homing modalities for the development of precision strategies for the treatment and diagnosis of glioblastomas.


Asunto(s)
Cadherinas , Técnicas de Visualización de Superficie Celular , Glioblastoma , Péptidos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre Neoplásicas , Humanos , Animales , Ratones , Trasplante de Neoplasias , Péptidos/uso terapéutico , Cadherinas/antagonistas & inhibidores , Terapia Molecular Dirigida , Modelos Animales de Enfermedad
6.
Nat Commun ; 14(1): 2262, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37080989

RESUMEN

The Wnt pathway is frequently dysregulated in many cancers, underscoring it as a therapeutic target. Wnt inhibitors have uniformly failed in clinical trials. Here, we report a mechanism of WNT pathway activation through the Semaphorin 3 C neurodevelopmental program in glioma stem-like cells. Sema3C directs ß-catenin nuclear accumulation in a Rac1-dependent process, leading to transactivation of Wnt target genes. Sema3C-driven Wnt signaling occurred despite suppression of Wnt ligand secretion, suggesting that Sema3C drives canonical Wnt signaling independent of Wnt ligand binding. In a mouse model of glioblastoma, combined depletion of Sema3C and ß-catenin partner TCF1 extended animal survival more than single target inhibition alone. In human glioblastoma, Sema3C expression and Wnt pathway activation were highly concordant. Since Sema3C is frequently overexpressed in glioblastoma, Sema3C signaling may be a significant mechanism of resistance to upstream Wnt pathway inhibitors. Dual targeting of Sema3C and Wnt pathways may achieve clinically significant Wnt pathway inhibition.


Asunto(s)
Glioblastoma , Semaforinas , Animales , Humanos , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Ligandos , Semaforinas/genética , Vía de Señalización Wnt/genética
7.
Neuro Oncol ; 25(8): 1428-1440, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-36521011

RESUMEN

BACKGROUND: Cancer cells including cancer stem cells exhibit a higher rate of ribosome biogenesis than normal cells to support rapid cell proliferation in tumors. However, the molecular mechanisms governing the preferential ribosome biogenesis in glioma stem cells (GSCs) remain unclear. In this work, we show that the novel INHAT repressor (NIR) promotes ribosomal DNA (rDNA) transcription to support GSC proliferation and glioblastoma (GBM) growth, suggesting that NIR is a potential therapeutic target for GBM. METHODS: Immunoblotting, immunohistochemical and immunofluorescent analysis were used to determine NIR expression in GSCs and human GBMs. Using shRNA-mediated knockdown, we assessed the role and functional significance of NIR in GSCs and GSC-derived orthotopic GBM xenografts. We further performed mass spectrometry analysis, chromatin immunoprecipitation, and other biochemical assays to define the molecular mechanisms by which NIR promotes GBM progression. RESULTS: Our results show that high expression of NIR predicts poor survival in GBM patients. NIR is enriched in the nucleoli of GSCs in human GBMs. Disrupting NIR markedly suppresses GSC proliferation and tumor growth by inhibiting rDNA transcription and pre-ribosomal RNA synthesis. In mechanistic studies, we find that NIR activates rDNA transcription to promote GSC proliferation by cooperating with Nucleolin (NCL) and Nucleophosmin 1 (NPM1), 2 important nucleolar transcription factors. CONCLUSIONS: Our study uncovers a critical role of NIR-mediated rDNA transcription in the malignant progression of GBM, indicating that targeting this axis may provide a novel therapeutic strategy for GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , ADN Ribosómico/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioma/patología , Células Madre Neoplásicas/metabolismo , Proliferación Celular
8.
Cell Rep ; 40(11): 111348, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36103817

RESUMEN

Despite therapeutic interventions for glioblastoma (GBM), cancer stem cells (CSCs) drive recurrence. The precise mechanisms underlying CSC resistance, namely inhibition of cell death, are unclear. We built on previous observations that the high cell surface expression of junctional adhesion molecule-A drives CSC maintenance and identified downstream signaling networks, including the cysteine protease inhibitor SerpinB3. Using genetic depletion approaches, we found that SerpinB3 is necessary for CSC maintenance, survival, and tumor growth, as well as CSC pathway activation. Knockdown of SerpinB3 also increased apoptosis and susceptibility to radiation therapy. SerpinB3 was essential to buffer cathepsin L-mediated cell death, which was enhanced with radiation. Finally, we found that SerpinB3 knockdown increased the efficacy of radiation in pre-clinical models. Taken together, our findings identify a GBM CSC-specific survival mechanism involving a cysteine protease inhibitor, SerpinB3, and provide a potential target to improve the efficacy of GBM therapies against therapeutically resistant CSCs.


Asunto(s)
Glioblastoma , Inhibidores de Cisteína Proteinasa/metabolismo , Inhibidores de Cisteína Proteinasa/uso terapéutico , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/metabolismo , Transducción de Señal
9.
EMBO J ; 41(7): e109187, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35191554

RESUMEN

Hypoxia regulates tumor angiogenesis, metabolism, and therapeutic response in malignant cancers including glioblastoma, the most lethal primary brain tumor. The regulation of HIF transcriptional factors by the ubiquitin-proteasome system is critical in the hypoxia response, but hypoxia-inducible deubiquitinases that counteract the ubiquitination remain poorly defined. While the activation of ERK1/2 also plays an important role in hypoxia response, the relationship between ERK1/2 activation and HIF regulation remains elusive. Here, we identified USP33 as essential deubiquitinase that stabilizes HIF-2alpha protein in an ERK1/2-dependent manner to promote hypoxia response in cancer cells. USP33 is preferentially induced in glioma stem cells by hypoxia and interacts with HIF-2alpha, leading to its stabilization through deubiquitination. The activation of ERK1/2 upon hypoxia promoted HIF-2alpha phosphorylation, enhancing its interaction with USP33. Silencing of USP33 disrupted glioma stem cells maintenance, reduced tumor vascularization, and inhibited glioblastoma growth. Our findings highlight USP33 as an essential regulator of hypoxia response in cancer stem cells, indicating a novel potential therapeutic target for brain tumor treatment.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias Encefálicas , Glioma , Células Madre Neoplásicas , Ubiquitina Tiolesterasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/patología , Hipoxia de la Célula , Glioma/patología , Humanos , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
10.
Sci Transl Med ; 14(626): eabf3917, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34985972

RESUMEN

Glioblastomas are universally fatal cancers and contain self-renewing glioblastoma stem cells (GSCs) that initiate tumors. Traditional anticancer drug discovery based on in vitro cultures tends to identify targets with poor therapeutic indices and fails to accurately model the effects of the tumor microenvironment. Here, leveraging in vivo genetic screening, we identified the histone H3 lysine 4 trimethylation (H3K4me3) regulator DPY30 (Dpy-30 histone methyltransferase complex regulatory subunit) as an in vivo­specific glioblastoma dependency. On the basis of the hypothesis that in vivo epigenetic regulation may define critical GSC dependencies, we interrogated active chromatin landscapes of GSCs derived from intracranial patient-derived xenografts (PDXs) and cell culture through H3K4me3 chromatin immunoprecipitation and transcriptome analyses. Intracranial-specific genes marked by H3K4me3 included FOS, NFκB, and phosphodiesterase (PDE) family members. In intracranial PDX tumors, DPY30 regulated angiogenesis and hypoxia pathways in an H3K4me3-dependent manner but was dispensable in vitro in cultured GSCs. PDE4B was a key downstream effector of DPY30, and the PDE4 inhibitor rolipram preferentially targeted DPY30-expressing cells and impaired PDX tumor growth in mice without affecting tumor cells cultured in vitro. Collectively, the MLL/SET1 (mixed lineage leukemia/SET domain-containing 1, histone lysine methyltransferase) complex member DPY30 selectively regulates H3K4me3 modification on genes critical to support angiogenesis and tumor growth in vivo, suggesting the DPY30-PDE4B axis as a specific therapeutic target in glioblastoma.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Glioblastoma , Factores de Transcripción , Animales , Cromatina , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Epigénesis Genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Ratones , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral
11.
Sci China Life Sci ; 65(2): 362-375, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34109474

RESUMEN

Beef and mutton production has been aided by breeding to integrate allelic diversity for myostatin (MSTN), but a lack of diversity in the MSTN germplasm has limited similar advances in pig farming. Moreover, insurmountable challenges with congenital lameness and a dearth of data about the impacts of feed conversion, reproduction, and meat quality in MSTN-edited pigs have also currently blocked progress. Here, in a largest-to-date evaluation of multiple MSTN-edited pig populations, we demonstrated a practical alternative edit-site-based solution that overcomes the major production obstacle of hindlimb weakness. We also provide long-term and multidomain datasets for multiple breeds that illustrate how MSTN-editing can sustainably increase the yields of breed-specific lean meat and the levels of desirable lipids without deleteriously affecting feed-conversion rates or litter size. Apart from establishing a new benchmark for the data scale and quality of genome-edited animal production, our study specifically illustrates how gene-editing site selection profoundly impacts the phenotypic outcomes in diverse genetic backgrounds.


Asunto(s)
Edición Génica/métodos , Cojera Animal/prevención & control , Miostatina/genética , Carne de Cerdo/análisis , Enfermedades de los Porcinos/prevención & control , Alelos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Modificados Genéticamente , Metabolismo Energético , Miembro Posterior/fisiopatología , Cojera Animal/genética , Cojera Animal/metabolismo , Especificidad de la Especie , Porcinos/genética , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/metabolismo , Termogénesis
12.
J Exp Med ; 218(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34617969

RESUMEN

Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Encéfalo/metabolismo , Muerte Celular/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Masculino , Ratones , Células-Madre Neurales/metabolismo
13.
Sci Transl Med ; 13(600)2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193614

RESUMEN

Glioblastoma (GBM), a lethal primary brain tumor, contains glioma stem cells (GSCs) that promote malignant progression and therapeutic resistance. SOX2 is a core transcription factor that maintains the properties of stem cells, including GSCs, but mechanisms associated with posttranslational SOX2 regulation in GSCs remain elusive. Here, we report that DNA-dependent protein kinase (DNA-PK) governs SOX2 stability through phosphorylation, resulting in GSC maintenance. Mass spectrometric analyses of SOX2-binding proteins showed that DNA-PK interacted with SOX2 in GSCs. The DNA-PK catalytic subunit (DNA-PKcs) was preferentially expressed in GSCs compared to matched non-stem cell tumor cells (NSTCs) isolated from patient-derived GBM xenografts. DNA-PKcs phosphorylated human SOX2 at S251, which stabilized SOX2 by preventing WWP2-mediated ubiquitination, thus promoting GSC maintenance. We then demonstrated that when the nuclear DNA of GSCs either in vitro or in GBM xenografts in mice was damaged by irradiation or treatment with etoposide, the DNA-PK complex dissociated from SOX2, which then interacted with WWP2, leading to SOX2 degradation and GSC differentiation. These results suggest that DNA-PKcs-mediated phosphorylation of S251 was critical for SOX2 stabilization and GSC maintenance. Pharmacological inhibition of DNA-PKcs with the DNA-PKcs inhibitor NU7441 reduced GSC tumorsphere formation in vitro and impaired growth of intracranial human GBM xenografts in mice as well as sensitized the GBM xenografts to radiotherapy. Our findings suggest that DNA-PK maintains GSCs in a stem cell state and that DNA damage triggers GSC differentiation through precise regulation of SOX2 stability, highlighting that DNA-PKcs has potential as a therapeutic target in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/antagonistas & inhibidores , Glioblastoma/radioterapia , Glioma/radioterapia , Animales , Neoplasias Encefálicas/genética , Diferenciación Celular , Línea Celular Tumoral , Ratones , Células Madre Neoplásicas , Factores de Transcripción SOXB1
14.
Stem Cells ; 39(7): 853-865, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33594762

RESUMEN

Glioblastoma (GBM) ranks among the most lethal of human malignancies with GBM stem cells (GSCs) that contribute to tumor growth and therapeutic resistance. Identification and isolation of GSCs continue to be a challenge, as definitive methods to purify these cells for study or targeting are lacking. Here, we leveraged orthogonal in vitro and in vivo phage display biopanning strategies to isolate a single peptide with GSC-specific binding properties. In silico analysis of this peptide led to the isolation of EYA1 (Eyes Absent 1), a tyrosine phosphatase and transcriptional coactivator. Validating the phage discovery methods, EYA1 was preferentially expressed in GSCs compared to differentiated tumor progeny. MYC is a central mediator of GSC maintenance but has been resistant to direct targeting strategies. Based on correlation and colocalization of EYA1 and MYC, we interrogated a possible interaction, revealing binding of EYA1 to MYC and loss of MYC expression upon targeting EYA1. Supporting a functional role for EYA1, targeting EYA1 expression decreased GSC proliferation, migration, and self-renewal in vitro and tumor growth in vivo. Collectively, our results suggest that phage display can identify novel therapeutic targets in stem-like tumor cells and that an EYA1-MYC axis represents a potential therapeutic paradigm for GBM.


Asunto(s)
Bacteriófagos , Neoplasias Encefálicas , Glioblastoma , Bacteriófagos/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo
15.
Cell Rep ; 34(1): 108522, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406417

RESUMEN

Piwi proteins are a subfamily of Argonaute proteins that maintain germ cells in eukaryotes. However, the role of their human homologs in cancer stem cells, and more broadly in cancer, is poorly understood. Here, we report that Piwi-like family members are overexpressed in glioblastoma (GBM), with Piwil1 (Hiwi) most frequently overexpressed (88%). Piwil1 is enriched in glioma stem-like cells (GSCs) to maintain self-renewal. Silencing Piwil1 in GSCs leads to global changes in gene expression resulting in cell-cycle arrest, senescence, or apoptosis. Piwil1 knockdown increases expression of the transcriptional co-regulator BTG2 and the E3-ubiquitin ligase FBXW7, leading to reduced c-Myc expression, as well as loss of expression of stem cell factors Olig2 and Nestin. Piwil1 regulates mRNA stability of BTG2, FBXW7, and CDKN1B. In animal models of GBM, Piwil1 knockdown suppresses tumor growth and promotes mouse survival. These findings support a role of Piwil1 in GSC maintenance and glioblastoma progression.


Asunto(s)
Proteínas Argonautas/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Argonautas/genética , Neoplasias Encefálicas/genética , Ciclo Celular , Línea Celular , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioma/genética , Humanos , Masculino , Ratones , Nestina/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Estabilidad del ARN
16.
Nat Cancer ; 2(11): 1136-1151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-35122055

RESUMEN

Glioblastoma (GBM) contains abundant tumor-associated macrophages (TAMs). The majority of TAMs are tumor-promoting macrophages (pTAMs), while tumor-suppressive macrophages (sTAMs) are the minority. Thus, reprogramming pTAMs into sTAMs represents an attractive therapeutic strategy. By screening a collection of small-molecule compounds, we find that inhibiting ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) with MK-8931 potently reprograms pTAMs into sTAMs and promotes macrophage phagocytosis of glioma cells; moreover, low-dose radiation markedly enhances TAM infiltration and synergizes with MK-8931 treatment to suppress malignant growth. BACE1 is preferentially expressed by pTAMs in human GBMs and is required to maintain pTAM polarization through trans-interleukin 6 (IL-6)-soluble IL-6 receptor (sIL-6R)-signal transducer and activator of transcription 3 (STAT3) signaling. Because MK-8931 and other BACE1 inhibitors have been developed for Alzheimer's disease and have been shown to be safe for humans in clinical trials, these inhibitors could potentially be streamlined for cancer therapy. Collectively, this study offers a promising therapeutic approach to enhance macrophage-based therapy for malignant tumors.


Asunto(s)
Glioblastoma , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , Glioblastoma/tratamiento farmacológico , Humanos , Macrófagos/patología , Fagocitosis
17.
EMBO Mol Med ; 12(12): e12291, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33124191

RESUMEN

Nuclear matrix-associated proteins (NMPs) play critical roles in regulating chromatin organization and gene transcription by binding to the matrix attachment regions (MARs) of DNA. However, the functional significance of NMPs in glioblastoma (GBM) progression remains unclear. Here, we show that the Special AT-rich Binding Protein-2 (SATB2), one of crucial NMPs, recruits histone acetyltransferase CBP to promote the FOXM1-mediated cell proliferation and tumor growth of GBM. SATB2 is preferentially expressed by glioma stem cells (GSCs) in GBM. Disrupting SATB2 markedly inhibited GSC proliferation and GBM malignant growth by down-regulating expression of key genes involved in cell proliferation program. SATB2 activates FOXM1 expression to promote GSC proliferation through binding to the MAR sequence of FOXM1 gene locus and recruiting CBP to the MAR. Importantly, pharmacological inhibition of SATB2/CBP transcriptional activity by the CBP inhibitor C646 suppressed GSC proliferation in vitro and GBM growth in vivo. Our study uncovers a crucial role of the SATB2/CBP-mediated transcriptional regulation in GBM growth, indicating that targeting SATB2/CBP may effectively improve GBM treatment.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína Forkhead Box M1/genética , Regulación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Células Madre Neoplásicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Células Madre Neoplásicas/patología
18.
Neuro Oncol ; 22(12): 1809-1821, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-32592588

RESUMEN

BACKGROUND: The tumorigenic potential of glioma stem cells (GSCs) is associated with multiple reversible molecular alternations, but the role of posttranslational protein sumoylation in GSCs has not been elucidated. The development of GSC-targeting drugs relies on the discovery of GSC-preferential molecular modifications and the relevant signaling pathways. In this work, we investigated the protein sumoylation status, the major sumoylated substrate, and the key regulatory enzyme in GSCs to explore the therapeutic potential of disrupting protein sumoylation for glioblastoma (GBM) treatment. METHODS: Patient-derived GSCs, primary GBM sections, and intracranial GBM xenografts were used to determine protein sumoylation and the related molecular mechanisms by immunoblot, quantitative PCR, immunoprecipitation, immunofluorescence, and immunohistochemistry. Orthotopic GBM xenograft models were applied to investigate the inhibition of tumor growth by disrupting protein sumoylation with short hairpin (sh)RNAs or molecular inhibitors. RESULTS: We show that high levels of small ubiquitin-related modifier 1 (SUMO1)-but not SUMO2/3-modified sumoylation are preferentially present in GSCs. The promyelocytic leukemia (PML) protein is a major SUMO1-sumoylated substrate in GSCs, whose sumoylation facilitates its interaction with c-Myc to stabilize c-Myc proteins. The prolyl-isomerase Pin1 is preferentially expressed in GSCs and functions as the key enzyme to promote SUMO1 sumoylation. Disruption of SUMO1 sumoylation by Pin1 silencing with shRNAs or inhibition with its inhibitor Juglone markedly abrogated GSC maintenance and mitigated GSC-driven tumor growth. CONCLUSIONS: Our findings indicate that high SUMO1-modified protein sumoylation as a feature of GSCs is critical for GSC maintenance, suggesting that targeting SUMO1 sumoylation may effectively improve GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Células Madre Neoplásicas , Proteína SUMO-1 , Transducción de Señal , Sumoilación
19.
Nat Commun ; 11(1): 3015, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32541784

RESUMEN

The interplay between glioma stem cells (GSCs) and the tumor microenvironment plays crucial roles in promoting malignant growth of glioblastoma (GBM), the most lethal brain tumor. However, the molecular mechanisms underlying this crosstalk are incompletely understood. Here, we show that GSCs secrete the Wnt-induced signaling protein 1 (WISP1) to facilitate a pro-tumor microenvironment by promoting the survival of both GSCs and tumor-associated macrophages (TAMs). WISP1 is preferentially expressed and secreted by GSCs. Silencing WISP1 markedly disrupts GSC maintenance, reduces tumor-supportive TAMs (M2), and potently inhibits GBM growth. WISP1 signals through Integrin α6ß1-Akt to maintain GSCs by an autocrine mechanism and M2 TAMs through a paracrine manner. Importantly, inhibition of Wnt/ß-catenin-WISP1 signaling by carnosic acid (CA) suppresses GBM tumor growth. Collectively, these data demonstrate that WISP1 plays critical roles in maintaining GSCs and tumor-supportive TAMs in GBM, indicating that targeting Wnt/ß-catenin-WISP1 signaling may effectively improve GBM treatment and the patient survival.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas CCN de Señalización Intercelular/genética , Glioma/genética , Macrófagos/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Proteínas CCN de Señalización Intercelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Doxiciclina/farmacología , Glioma/metabolismo , Glioma/terapia , Humanos , Estimación de Kaplan-Meier , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
J Exp Med ; 217(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32181805

RESUMEN

Type I interferons (IFNs) are known to mediate antineoplastic effects during tumor progression. Type I IFNs can be produced by multiple cell types in the tumor microenvironment; however, the molecular mechanisms by which tumor cells evade the inhibition of immune microenvironment remain unknown. Here we demonstrate that glioma stem-like cells (GSCs) evade type I IFN suppression through downregulation of STAT1 to initiate tumor growth under inhospitable conditions. The downregulation of STAT1 is mediated by MBD3, an epigenetic regulator. MBD3 is preferentially expressed in GSCs and recruits NuRD complex to STAT1 promoter to suppress STAT1 expression by histone deacetylation. Importantly, STAT1 overexpression or MBD3 depletion induces p21 transcription, resensitizes GSCs to IFN suppression, attenuates GSC tumor growth, and prolongs animal survival. Our findings demonstrate that inactivation of STAT1 signaling by MBD3/NuRD provides GSCs with a survival advantage to escape type I IFN suppression, suggesting that targeting MBD3 may represent a promising therapeutic opportunity to compromise GSC tumorigenic potential.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Glioma/patología , Interferones/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Células Madre Neoplásicas/metabolismo , Factor de Transcripción STAT1/metabolismo , Acetilación , Anciano , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/patología , Regiones Promotoras Genéticas/genética , Factor de Transcripción STAT1/genética , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA