RESUMEN
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a widespread drug of abuse with known neurotoxic properties. The present study aimed to evaluate the differential toxic effects of MDMA in adolescent and aged Wistar rats, using doses pharmacologically comparable to humans. Adolescent (post-natal day 40) (3 × 5 mg/kg, 2 h apart) and aged (mean 20 months old) (2 × 5 mg/kg, 2 h apart) rats received MDMA intraperitoneally. Animals were killed 7 days later, and the frontal cortex, hippocampus, striatum and cerebellum brain areas were dissected, and heart, liver and kidneys were collected. MDMA caused hyperthermia in both treated groups, but aged rats had a more dramatic temperature elevation. MDMA promoted serotonergic neurotoxicity only in the hippocampus of aged, but not in the adolescents' brain, and did not change the levels of dopamine or serotonin metabolite in the striatum of both groups. Differential responses according to age were also seen regarding brain p-Tau levels, a hallmark of a degenerative brain, since only aged animals had significant increases. MDMA evoked brain oxidative stress in the hippocampus and striatum of aged, and in the hippocampus, frontal cortex, and striatum brain areas of adolescents according to protein carbonylation, but only decreased GSH levels in the hippocampus of aged animals. The brain maturational stage seems crucial for MDMA-evoked serotonergic neurotoxicity. Aged animals were more susceptible to MDMA-induced tissue damage in the heart and kidneys, and both ages had an increase in liver fibrotic tissue content. In conclusion, age is a determinant factor for the toxic events promoted by "ecstasy". This work demonstrated special susceptibility of aged hippocampus to MDMA neurotoxicity, as well as impressive damage to the heart and kidney tissue following "ecstasy".
Asunto(s)
Envejecimiento/efectos de los fármacos , Encéfalo/efectos de los fármacos , Fiebre/inducido químicamente , N-Metil-3,4-metilenodioxianfetamina/toxicidad , Síndromes de Neurotoxicidad/etiología , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Dopamina , Fiebre/metabolismo , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Síndromes de Neurotoxicidad/metabolismo , Ratas Wistar , SerotoninaRESUMEN
Abuse of synthetic drugs is widespread worldwide. Studies indicate that piperazine designer drugs act as substrates at dopaminergic and serotonergic receptors and/or transporters in the brain. This work aimed to investigate the cytotoxicity of N-benzylpiperazine, 1-(3-trifluoromethylphenyl)piperazine, 1-(4-methoxyphenyl)piperazine and 1-(3,4-methylenedioxybenzyl)piperazine in the differentiated human neuroblastoma SH-SY5Y cell line. Cytotoxicity was evaluated after 24 h incubations through the MTT reduction and neutral red uptake assays. Oxidative stress (reactive oxygen and nitrogen species production and glutathione content) and energetic (ATP content) parameters, as well as intracellular Ca(2+), mitochondrial membrane potential, DNA damage (comet assay) and cell death mode were also evaluated. Complete cytotoxicity curves were obtained after 24 h incubations with each drug. A significant decrease in intracellular total glutathione content was noted for all the tested drugs. All drugs caused a significant increase of intracellular free Ca(2+) levels, accompanied by mitochondrial hyperpolarization. However, ATP levels remained unchanged. The investigation of cell death mode revealed a predominance of early apoptotic cells. No genotoxicity was found in the comet assay. Among the tested drugs, 1-(3-trifluoromethylphenyl)piperazine was the most cytotoxic. Overall, piperazine designer drugs are potentially neurotoxic, supporting concerns on risks associated with the abuse of these drugs.