Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Methods Mol Biol ; 2170: 35-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32797449

RESUMEN

Laser capture microdissection (LCM) has become a powerful technique that allows analyzing gene expression in specific target cells from complex tissues. Widely used in animal research, still few studies on plants have been carried out. We have applied this technique to the plant-nematode interaction by isolating feeding cells (giant cells; GCs) immersed inside complex swelled root structures (galls) induced by root-knot nematodes. For this purpose, a protocol that combines good morphology preservation with RNA integrity maintenance was developed, and successfully applied to Arabidopsis and tomato galls. Specifically, early developing GCs at 3 and 7 days post-infection (dpi) were analyzed; RNA from LCM GCs was amplified and used successfully for microarray assays.


Asunto(s)
Crioultramicrotomía/métodos , Captura por Microdisección con Láser/métodos , ARN de Planta/aislamiento & purificación , Solanum lycopersicum/genética , Solanum lycopersicum/parasitología , Animales , Regulación de la Expresión Génica de las Plantas , Células Gigantes/metabolismo , Células Gigantes/parasitología , Interacciones Huésped-Parásitos , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Tylenchoidea/patogenicidad
2.
New Phytol ; 227(1): 200-215, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32129890

RESUMEN

Root-knot nematodes (RKNs; Meloidogyne spp.) induce new post-embryogenic organs within the roots (galls) where they stablish and differentiate nematode feeding cells, giant cells (GCs). The developmental programmes and functional genes involved remain poorly defined. Arabidopsis root apical meristem (RAM), lateral root (LR) and callus marker lines, SHORT-ROOT/SHR, SCARECROW/SCR, SCHIZORIZA/SCZ, WUSCHEL-RELATED-HOMEOBOX-5/WOX5, AUXIN-RESPONSIVE-FACTOR-5/ARF5, ARABIDOPSIS-HISTIDINE PHOSPHOTRANSFER-PROTEIN-6/AHP6, GATA-TRANSCRIPTION FACTOR-23/GATA23 and S-PHASE-KINASE-ASSOCIATED-PROTEIN2B/SKP2B, were analysed for nematode-dependent expression. Their corresponding loss-of-function lines, including those for LR upstream regulators, SOLITARY ROOT/SLR/IAA14, BONDELOS/BDL/IAA12 and INDOLE-3-ACETIC-ACID-INDUCIBLE-28/IAA28, were tested for RKN resistance/tolerance. LR genes, for example ARF5 (key factor for root stem-cell niche regeneration), GATA23 (which specifies pluripotent founder cells) and AHP6 (cytokinin-signalling-inhibitor regulating pericycle cell-divisions orientation), show a crucial function during gall formation. RKNs do not compromise the number of founder cells or LR primordia but locally induce gall formation possibly by tuning the auxin/cytokinin balance in which AHP6 might be necessary. Key RAM marker genes were induced and functional in galls. Therefore, the activation of plant developmental programmes promoting transient-pluripotency/stemness leads to the generation of quiescent-centre and meristematic-like cell identities within the vascular cylinder of galls. Nematodes enlist developmental pathways of new organogenesis and/or root regeneration in the vascular cells of galls. This should determine meristematic cell identities with sufficient transient pluripotency for gall organogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas/metabolismo
3.
Front Plant Sci ; 10: 657, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214210

RESUMEN

Meloidogyne spp. are plant-parasitic nematodes that form a very complex pseudo-organ, called gall, which contains the giant cells (GCs) to nourish them. During the last decade, several groups have been studying the molecular processes accompanying the formation of these structures, combining both transcriptomics and cellular biology. Among others, it was confirmed that a generalized gene repression is a hallmark of early developing GCs formed by Meloidogyne javanica in Arabidopsis and tomato. One of the main mechanisms behind this gene repression involve small RNAs (sRNAs) directed gene silencing. This is supported not only by the described action of several microRNAs differentially expressed in galls, but by the differential abundance of 24-nucleotide sRNAs in early developing Arabidopsis galls, particularly those rasiRNAs which are mostly involved in RNA-directed DNA methylation. Their accumulation strongly correlates to the repression of several retrotransposons at pericentromeric regions of Arabidopsis chromosomes in early galls. However, the contribution of this global gene repression to GCs/galls formation and maintenance is still not fully understood. Further detailed studies, as the correlation between gene expression profiles and the methylation state of the chromatin in galls are essential to raise testable working hypotheses. A high quality of isolated DNA and RNA is a requirement to obtain non-biased and comprehensive results. Frequently, the isolation of DNA and RNA is performed from different samples of the same type of biological material. However, subtle differences on epigenetic processes are frequent even among independent biological replicates of the same tissue and may not correlate to those changes on the mRNA population obtained from different biological replicates. Herein, we describe a method that allows the simultaneous extraction and purification of genomic DNA and total RNA from the same biological sample adapted to our biological system. The quality of both nucleic acids from Arabidopsis galls formed by M. javanica was high and adequate to construct RNA and DNA libraries for high throughput sequencing used for transcriptomic and epigenetic studies, such as the analysis of the methylation state of the genomic DNA in galls (MethylC-seq) and RNA sequencing (RNAseq). The protocol presents guidance on the described procedure, key notes and troubleshooting.

4.
New Phytol ; 217(2): 813-827, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29105090

RESUMEN

Root knot nematodes (RKNs) penetrate into the root vascular cylinder, triggering morphogenetic changes to induce galls, de novo formed 'pseudo-organs' containing several giant cells (GCs). Distinctive gene repression events observed in early gall/GCs development are thought to be mediated by post-transcriptional silencing via microRNAs (miRNAs), a process that is far from being fully characterized. Arabidopsis thaliana backgrounds with altered activities based on target 35S::MIMICRY172 (MIM172), 35S::TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1)-miR172-resistant (35S::TOE1R ) and mutant (flowering locus T-10 (ft-10)) lines were used for functional analysis of nematode infective and reproductive parameters. The GUS-reporter lines, MIR172A-E::GUS, treated with auxin (IAA) and an auxin-inhibitor (a-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA)), together with the MIR172C AuxRE::GUS line with two mutated auxin responsive elements (AuxREs), were assayed for nematode-dependent gene expression. Arabidopsis thaliana backgrounds with altered expression of miRNA172, TOE1 or FT showed lower susceptibility to the RKNs and smaller galls and GCs. MIR172C-D::GUS showed restricted promoter activity in galls/GCs that was regulated by auxins through auxin-responsive factors. IAA induced their activity in galls while PEO-IAA treatment and mutations in AuxRe motifs abolished it. The results showed that the regulatory module miRNA172/TOE1/FT plays an important role in correct GCs and gall development, where miRNA172 is modulated by auxins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/parasitología , Conducta Alimentaria , Redes Reguladoras de Genes , MicroARNs/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Productos Agrícolas/genética , Productos Agrícolas/parasitología , Progresión de la Enfermedad , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Células Gigantes/metabolismo , Células Gigantes/parasitología , Glucuronidasa/metabolismo , Ácidos Indolacéticos/farmacología , MicroARNs/genética , Modelos Biológicos , Enfermedades de las Plantas/parasitología , Tumores de Planta/parasitología , Regiones Promotoras Genéticas/genética , Tylenchoidea/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
5.
New Phytol ; 216(3): 882-896, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28906559

RESUMEN

Root knot nematodes (RKN) are root parasites that induce the genetic reprogramming of vascular cells into giant feeding cells and the development of root galls. MicroRNAs (miRNAs) regulate gene expression during development and plant responses to various stresses. Disruption of post-transcriptional gene silencing in Arabidopsis ago1 or ago2 mutants decrease the infection rate of RKN suggesting a role for this mechanism in the plant-nematode interaction. By sequencing small RNAs from uninfected Arabidopsis roots and from galls 7 and 14 d post infection with Meloidogyne incognita, we identified 24 miRNAs differentially expressed in gall as putative regulators of gall development. Moreover, strong activity within galls was detected for five miRNA promoters. Analyses of nematode development in an Arabidopsis miR159abc mutant had a lower susceptibility to RKN, suggesting a role for the miR159 family in the plant response to M. incognita. Localization of mature miR159 within the giant and surrounding cells suggested a role in giant cell and gall. Finally, overexpression of miR159 in galls at 14 d post inoculation was associated with the repression of the miR159 target MYB33 which expression is restricted to the early stages of infection. Overall, these results implicate the miR159 in plant responses to RKN.


Asunto(s)
Arabidopsis/genética , Arabidopsis/parasitología , MicroARNs/genética , Tylenchoidea/patogenicidad , Animales , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Interacciones Huésped-Parásitos/genética , Raíces de Plantas/genética , Tumores de Planta/parasitología , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
6.
Front Plant Sci ; 7: 966, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458466

RESUMEN

Galls induced by Meloidogyne spp. in plant roots are a complex organ formed by heterogeneous tissues; within them there are 5-8 giant cells (GCs) that root-knot nematodes use for their own nurturing. Subtle regulatory mechanisms likely mediate the massive gene repression described at early infection stages in galls, particularly in giant cells. Some of these mechanisms are mediated by microRNAs (miRNAs); hence we describe a reliable protocol to detect miRNAs abundance within the gall tissues induced by Meloidogyne spp. Some methods are available to determine the abundance of specific miRNAs in different plant parts; however, galls are complex organs formed by different tissues. Therefore, detection of miRNAs at the cellular level is particularly important to understand specific regulatory mechanisms operating within the GCs. In situ hybridization (ISH) is a classical, robust and accurate method that allows the localization of specific RNAs directly on plant tissues. We present for the first time an adapted and standardized ISH protocol to detect miRNAs in GCs induced by nematodes based on tissue embedded in paraffin and on-slide ISH of miRNAs. It can be adapted to any laboratory with no more requirements than a microtome and an optical microscope and it takes 10 days to perform once plant material has been collected. It showed to be very valuable for a quick detection of miRNAs expression pattern in tomato. We tested the protocol for miR390, as massive sequencing analysis showed that miR390 was induced at 3 dpi (days post-infection) in Arabidopsis galls and miR390 is 100% conserved between Arabidopsis and tomato. Successful localization of miR390 in tomato GCs constitutes a validation of this method that could be easily extended to other crops and/or syncytia induced by cyst nematodes. Finally, the protocol also includes guidance on troubleshooting.

7.
Front Plant Sci ; 7: 124, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26941745

RESUMEN

Root-knot nematodes (RKN) are polyphagous plant-parasitic roundworms that produce large crop losses, representing a relevant agricultural pest worldwide. After infection, they induce swollen root structures called galls containing giant cells (GCs) indispensable for nematode development. Among efficient control methods are biotechnology-based strategies that require a deep knowledge of underlying molecular processes during the plant-nematode interaction. Methods of achieving this knowledge include the application of molecular biology techniques such as transcriptomics (as massive sequencing or microarray hybridization), proteomics or metabolomics. These require aseptic experimental conditions, as undetected contamination with other microorganisms could compromise the interpretation of the results. Herein, we present a simple, efficient and long-term method for nematode amplification on cucumber roots grown in vitro. Amplification of juveniles (J2) from the starting inoculum is around 40-fold. The method was validated for three Meloidogyne species (Meloidogyne javanica, M. incognita, and M. arenaria), producing viable and robust freshly hatched J2s. These J2s can be used for further in vitro infection of different plant species such as Arabidopsis, tobacco and tomato, as well as to maintain and amplify the population. The method allowed maintenance of around 90 Meloidogyne sp. generations (one every 2 months) from a single initial female over 15 years.

8.
New Phytol ; 209(4): 1625-40, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26542733

RESUMEN

Root-knot nematodes (RKNs) induce inside the vascular cylinder the giant cells (GCs) embedded in the galls. The distinctive gene repression in early-developing GCs could be facilitated by small RNAs (sRNA) such as miRNAs, and/or epigenetic mechanisms mediated by 24nt-sRNAs, rasiRNAs and 21-22nt-sRNAs. Therefore, the sRNA-population together with the role of the miR390/TAS3/ARFs module were studied during early gall/GC formation. Three sRNA libraries from 3-d-post-inoculation (dpi) galls induced by Meloidogyne javanica in Arabidopsis and three from uninfected root segments were sequenced following Illumina-Solexa technology. pMIR390a::GUS and pTAS3::GUS lines were assayed for nematode-dependent promoter activation. A sensor line indicative of TAS3-derived tasiRNAs binding to the ARF3 sequence (pARF3:ARF3-GUS) together with a tasiRNA-resistant ARF3 line (pARF3:ARF3m-GUS) were used for functional analysis. The sRNA population showed significant differences between galls and controls, with high validation rate and correspondence with their target expression: 21-nt sRNAs corresponding mainly to miRNAs were downregulated, whilst 24-nt-sRNAs from the rasiRNA family were mostly upregulated in galls. The promoters of MIR390a and TAS3, active in galls, and the pARF3:ARF3-GUS line, indicated a role of TAS3-derived-tasiRNAs in galls. The regulatory module miR390/TAS3 is necessary for proper gall formation possibly through auxin-responsive factors, and the abundance of 24-nt sRNAs (mostly rasiRNAs) constitutes a gall hallmark.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , MicroARNs/metabolismo , Tumores de Planta/parasitología , ARN de Planta/genética , ARN Interferente Pequeño/metabolismo , Animales , Arabidopsis/parasitología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Genoma de Planta , Glucuronidasa/metabolismo , MicroARNs/genética , Nucleótidos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Raíces de Plantas/genética , Tumores de Planta/genética , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuencias Repetitivas de Ácidos Nucleicos/genética , Tylenchoidea
9.
Curr Issues Mol Biol ; 19: 53-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26363962

RESUMEN

Technology has contributed to the advances on the genomic, transcriptomic, metabolomic and proteomic analyses of the plant-root-knot nematode (RKN) interaction. Holistic approaches to obtain expression profiles, such as cDNA libraries, differential display, q-PCR, microarray hybridization, massive sequencing, etc., have increased our knowledge on the molecular aspects of the interaction and have triggered the development of biotechnological tools to control this plague. An important limitation, however, has been the difficulty of cross-comparative analysis of these data. The construction of a database, NEMATIC, compiling microarray data available in Arabidopsis of the interaction with plant endoparasitic nematodes facilitated the in silico analysis, but is not sufficient for the handling of 'omic' information of different plant species. Omics combined with cell isolation techniques have shed some light on the heterogeneous expression signatures of nematode induced gall tissues, i.e., plant defences are specifically inhibited in giant cells within the gall aiding the nematode for a successful establishment. The natural resistance against RKNs varies from an early hypersensitive reaction before the establishment of the nematode, to the arrest of gall growth. The molecular bases of these mechanisms, not fully understood yet, could disclose powerful targets for the development of biotechnology based tools for nematode control.


Asunto(s)
Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Genómica , Metabolómica , Nematodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Plantas/genética , Plantas/metabolismo , Proteómica , Animales , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Metabolómica/métodos , Enfermedades de las Plantas/prevención & control , Plantas/parasitología , Proteómica/métodos , Estrés Fisiológico , Transcriptoma
10.
New Phytol ; 206(2): 868-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25613856

RESUMEN

The control of plant parasitic nematodes is an increasing problem. A key process during the infection is the induction of specialized nourishing cells, called giant cells (GCs), in roots. Understanding the function of genes required for GC development is crucial to identify targets for new control strategies. We propose a standardized method for GC phenotyping in different plant genotypes, like those with modified genes essential for GC development. The method combines images obtained by bright-field microscopy from the complete serial sectioning of galls with TrakEM2, specialized three-dimensional (3D) reconstruction software for biological structures. The volumes and shapes from 162 3D models of individual GCs induced by Meloidogyne javanica in Arabidopsis were analyzed for the first time along their life cycle. A high correlation between the combined volume of all GCs within a gall and the total area occupied by all the GCs in the section/s where they show maximum expansion, and a proof of concept from two Arabidopsis transgenic lines (J0121 â‰« DTA and J0121 â‰« GFP) demonstrate the reliability of the method. We phenotyped GCs and developed a reliable simplified method based on a two-dimensional (2D) parameter for comparison of GCs from different Arabidopsis genotypes, which is also applicable to galls from different plant species and in different growing conditions, as thickness/transparency is not a restriction.


Asunto(s)
Arabidopsis/citología , Imagenología Tridimensional/métodos , Enfermedades de las Plantas/parasitología , Tylenchoidea/fisiología , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Forma de la Célula , Tamaño de la Célula , Células Gigantes/citología , Interacciones Huésped-Parásitos , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Programas Informáticos
11.
Front Plant Sci ; 5: 107, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24715895

RESUMEN

Phyto-endoparasitic nematodes induce specialized feeding cells (NFCs) in their hosts, termed syncytia and giant cells (GCs) for cyst and root-knot nematodes (RKNs), respectively. They differ in their ontogeny and global transcriptional signatures, but both develop cell wall ingrowths (CIs) to facilitate high rates of apoplastic/symplastic solute exchange showing transfer cell (TC) characteristics. Regulatory signals for TC differentiation are not still well-known. The two-component signaling system (2CS) and reactive oxygen species are proposed as inductors of TC identity, while, 2CSs-related genes are not major contributors to differential gene expression in early developing NFCs. Transcriptomic and functional studies have assigned a major role to auxin and ethylene as regulatory signals on early developing TCs. Genes encoding proteins with similar functions expressed in both early developing NFCs and typical TCs are putatively involved in upstream or downstream responses mediated by auxin and ethylene. Yet, no function directly associated to the TCs identity of NFCs, such as the formation of CIs is described for most of them. Thus, we reviewed similarities between transcriptional changes observed during the early stages of NFCs formation and those described during differentiation of TCs to hypothesize about putative signals leading to TC-like differentiation of NFCs with particular emphasis on auxin an ethylene.

12.
Methods Mol Biol ; 883: 87-95, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22589126

RESUMEN

Laser capture microdissection (LCM) has become a powerful technique that allows analyzing gene expression in specific target cells from complex tissues. It is widely used in animal research, yet few studies on plants have been carried out. We have applied this technique to the plants-nematode interaction by isolating feeding cells (giant cells; GCs) immersed inside complex swelled root structures (galls) induced by root-knot nematodes. For this purpose, a protocol that combines good morphology preservation with RNA integrity maintenance was developed, and successfully applied to Arabidopsis and tomato galls. Specifically, early developing GCs at 3 and 7 days post infection (dpi) were analyzed; RNA from LCM GCs was amplified and used successfully for microarray assays.


Asunto(s)
Secciones por Congelación/métodos , Captura por Microdisección con Láser/métodos , ARN de Planta/aislamiento & purificación , ARN/aislamiento & purificación , Animales , Arabidopsis/citología , Arabidopsis/parasitología , Células Gigantes/citología , Interacciones Huésped-Parásitos , Solanum lycopersicum/citología , Solanum lycopersicum/parasitología , Raíces de Plantas/parasitología , Tumores de Planta/parasitología , Tylenchoidea/fisiología
13.
BMC Public Health ; 10: 363, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573217

RESUMEN

BACKGROUND: Eating disorders (ED) have a multifactorial aetiology in which genetics play an important role. Several studies have found an association between the Val66Met (G196A) polymorphism of the Brain-Derived Neurotrophic Factor (BDNF) and Eating disorders.The aim of this study was to determine the association of the Val66Met (G196A) polymorphism of the BDNF gene and its effect on eating disorders (ED), energy intake and BMI in schoolchildren. METHODS: Two-year cohort study (preadolescence to adolescence). From an initial sample of 1336 Caucasian children (mean age = 11.37 years), a group at risk of ED (n = 141) and a control group (n = 117) were selected using the Children's Eating Attitudes Test. Two years later, they were re-classified into an at-risk group (n = 41) and a control group (n = 159) using the Eating Attitudes Test. The diagnosis of the individuals at risk of ED was confirmed by means of the Diagnostic Interview for Children and Adolescents. BMI, energy intake and the Val66Met (G196A) polymorphism of the BDNF gene were analysed in the at-risk and control groups. RESULTS: The frequency of genotypes of the Val66Met (G196A) polymorphism of the BDNF gene is 28.6% (95% CI: 22.4-34.9) in the heterozygous form (Val/Met) and 5% (95% CI: 2.4-9) in the homozygous form (Met/Met). We detected no association between Val66Met genotypes and the severity of ED. Over time, the carriers of the Met66 allele with a persistent risk of ED significantly restricted energy intake (507 Kcal/day; p = 0.033). CONCLUSION: We have not found an association between Val66Met (G196A) polymorphism of the BDNF and ED in schoolchildren from general population. The relationship found between this polymorphism and energy intake restriction in adolescents with a persistent risk of ED should be replicated in a larger sample.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Ingestión de Energía , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Polimorfismo Genético , Adolescente , Índice de Masa Corporal , Niño , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Masculino
14.
Plant J ; 61(4): 698-712, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20003167

RESUMEN

Root-knot nematodes differentiate highly specialized feeding cells in roots (giant cells, GCs), through poorly characterized mechanisms that include extensive transcriptional changes. While global transcriptome analyses have used galls, which are complex root structures that include GCs and surrounding tissues, no global gene expression changes specific to GCs have been described. We report on the differential transcriptome of GCs versus root vascular cells, induced in Arabidopsis by Meloidogyne javanica at a very early stage of their development, 3 days after infection (d.p.i.). Laser microdissection was used to capture GCs and root vascular cells for microarray analysis, which was validated through qPCR and by a promoter-GUS fusion study. Results show that by 3 d.p.i., GCs exhibit major gene repression. Although some genes showed similar regulation in both galls and GCs, the majority had different expression patterns, confirming the molecular distinctiveness of the GCs within the gall. Most of the differentially regulated genes in GCs have no previously assigned function. Comparisons with other transcriptome analyses revealed similarities between GCs and cell suspensions differentiating into xylem cells. This suggests a molecular link between GCs and developing vascular cells, which represent putative GC stem cells. Gene expression in GCs at 3 d.p.i. was also found to be similar to crown galls induced by Agrobacterium tumefaciens, a specialized root biotroph.


Asunto(s)
Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Células Gigantes/metabolismo , Raíces de Plantas/metabolismo , Tylenchoidea , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/parasitología , Análisis por Conglomerados , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/citología , Raíces de Plantas/genética , ARN de Planta/genética
15.
Plant Mol Biol ; 66(1-2): 151-64, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18046507

RESUMEN

Genes coding small heat-shock proteins (sHSPs) show distinct behaviours with respect to environmental and developmental signals. Their transcriptional regulation depends on particular combinations of heat stress cis-elements (heat-shock elements; HSEs) but many aspects regarding their regulation remain unclear. Cyst and root-knot nematodes induce, in the roots of infected plants, the differentiation of special feeding cells with high metabolic activity (syncytia and giant cells, respectively), a process accompanied by extensive gene expression changes. The Hahsp17.7G4 (G4) promoter was active in giant cells and its HSE arrangements were crucial for this activation. In the present work, we provide further basis to associate giant cell expression with the heat-shock response of this gene class, by analysing additional promoters. The Hahsp17.6G1 (G1) promoter, not induced by heat shock, was silent in giant cells, while Hahsp18.6G2 (G2), which responds to heat shock, was specifically induced in giant cells. In addition, a mutated Hahsp17.7G4 promoter version (G4MutP) with a strong heat-shock induction was also induced in giant cells. The responses of the different promoters correlated with distinct HSE configurations, which might have implications on differential trans-activation. Furthermore, the shortest giant cell and heat-shock-inducible sHSP promoter version analysed in tobacco (-83pb Hahsp17.7G4) fully maintained its expression profile in Arabidopsis. Cyst nematodes did not induce the Hahsp17.7G4 promoter, revealing additional specificity in the nematode response. These findings, together with the fact that the class I sHSP products of endogenous genes accumulated specifically in tobacco giant cells, support the idea that these nematode-induced giant cells represent a transcriptional state very similar to that produced by heat shock regarding this class of genes. The high metabolic rate of giant cells may result in unfolded proteins requiring class I sHSPs as chaperones, which might, somehow, mimic heat-shock and/or other stress responses.


Asunto(s)
Proteínas de Choque Térmico/fisiología , Nematodos/fisiología , Nicotiana/parasitología , Raíces de Plantas/parasitología , Regiones Promotoras Genéticas , Semillas/fisiología , Animales , Western Blotting
16.
Mol Plant Microbe Interact ; 16(12): 1062-8, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14651339

RESUMEN

Root-knot nematodes feed from specialized giant cells induced in the plants that they parasitize. We found that the promoter of the Hahsp17.7G4 gene, which encodes a small heat-shock protein involved in embryogenesis and stress responses, directed GUS expression in tobacco galls induced by the root-knot nematode Meloidogyne incognita. In roots containing a GUS reporter fusion to the Hahsp17.7G4 promoter, 10% of the galls stained for GUS expression 1 to 3 days after infection and the fraction stained increased to 60 to 80% 17 to 20 days after infection. A DNA fragment from -83 to +163, which contains heat-shock element (HSE) core sequences, is sufficient to support a promoter activity largely restricted to giant cells within the galls. Two-point mutations in HSE cores, previously reported to abolish the heat-shock response and to strongly reduce the embryogenesis response of the same promoter, did not reduce expression in giant cells. This suggests a distinct regulation of the promoter by nematodes. However, additional point mutations located at positions crucial for binding of heat-shock transcription factors (HSFs) caused a severe decrease in the nematode response. These results demonstrate that HSEs are involved in the promoter activation in giant cells and suggest that HSFs may mediate this response.


Asunto(s)
Proteínas de Choque Térmico/genética , Nematodos/genética , Nicotiana/parasitología , Raíces de Plantas/parasitología , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , ADN de Plantas , Raíces de Plantas/citología , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/parasitología , Nicotiana/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA