Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 20(10): 7059-7067, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32945683

RESUMEN

Nanoscale superlattices represent a compelling platform for designed materials as the specific identity and spatial arrangement of constituent layers can lead to tunable properties. A number of kinetically stabilized, nonepitaxial superlattices with almost limitless structural tunability have been reported in telluride and selenide chemistries but have not yet been extended to sulfides. Here, we present SnS-TaS2 nanoscale superlattices with tunable layer architecture. Layered amorphous precursors are prepared as thin films programmed to mimic the targeted superlattice; subsequent low temperature annealing activates self-assembly into crystalline nanocomposites. We investigate structure and composition of superlattices comprised of monolayers of TaS2 and 3-7 monolayers of SnS per repeating unit. Furthermore, a graded precursor preparation approach is introduced, allowing stabilization of superlattices with multiple stacking sequences in a single preparation. Controlled synthesis of the architecture of nanoscale superlattices is a critical path toward tuning their exotic properties and enabling integration with electronic, optical, or quantum devices.

2.
J Am Chem Soc ; 142(18): 8421-8430, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279492

RESUMEN

Nitride materials feature strong chemical bonding character that leads to unique crystal structures, but many ternary nitride chemical spaces remain experimentally unexplored. The search for previously undiscovered ternary nitrides is also an opportunity to explore unique materials properties, such as transitions between cation-ordered and -disordered structures, as well as to identify candidate materials for optoelectronic applications. Here, we present a comprehensive experimental study of MgSnN2, an emerging II-IV-N2 compound, for the first time mapping phase composition and crystal structure, and examining its optoelectronic properties computationally and experimentally. We demonstrate combinatorial cosputtering of cation-disordered, wurtzite-type MgSnN2 across a range of cation compositions and temperatures, as well as the unexpected formation of a secondary, rocksalt-type phase of MgSnN2 at Mg-rich compositions and low temperatures. A computational structure search shows that the rocksalt-type phase is substantially metastable (>70 meV/atom) compared to the wurtzite-type ground state. Spectroscopic ellipsometry reveals optical absorption onsets around 2 eV, consistent with band gap tuning via cation disorder. Finally, we demonstrate epitaxial growth of a mixed wurtzite-rocksalt MgSnN2 on GaN, highlighting an opportunity for polymorphic control via epitaxy. Collectively, these findings lay the groundwork for further exploration of MgSnN2 as a model ternary nitride, with controlled polymorphism, and for device applications, enabled by control of optoelectronic properties via cation ordering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA