RESUMEN
Introduction: This study aims to use diffusion tensor imaging (DTI) in conjunction with brain graph techniques to define brain structural connectivity and investigate its association with personal income (PI) in individuals of various ages and intelligence quotients (IQ). Methods: MRI examinations were performed on 55 male subjects (mean age: 40.1 ± 9.4 years). Graph data and metrics were generated, and DTI images were analyzed using tract-based spatial statistics (TBSS). All subjects underwent the Wechsler Adult Intelligence Scale for a reliable estimation of the full-scale IQ (FSIQ), which includes verbal comprehension index, perceptual reasoning index, working memory index, and processing speed index. The performance score was defined as the monthly PI normalized by the age of the subject. Results: The analysis of global graph metrics showed that modularity correlated positively with performance score (p = 0.003) and negatively with FSIQ (p = 0.04) and processing speed index (p = 0.005). No significant correlations were found between IQ indices and performance scores. Regional analysis of graph metrics showed modularity differences between right and left networks in sub-cortical (p = 0.001) and frontal (p = 0.044) networks. TBSS analysis showed greater axial and mean diffusivities in the high-performance group in correlation with their modular brain organization. Conclusion: This study showed that PI performance is strongly correlated with a modular organization of brain structural connectivity, which implies short and rapid networks, providing automatic and unconscious brain processing. Additionally, the lack of correlation between performance and IQ suggests a reduced role of academic reasoning skills in performance to the advantage of high uncertainty decision-making networks.
Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Renta , Inteligencia , Humanos , Masculino , Adulto , Inteligencia/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Imagen de Difusión Tensora/métodos , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Adulto Joven , Pruebas de Inteligencia , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Escalas de WechslerRESUMEN
It is often undermined that occupational safety policies do not only displace a direct effect on work well-being, but also an indirect effect on firms' economic performances. In such context, econometric models dominated the scenes of causality until recently while Machine Learning models were seen with skepticism. With the rise of complex datasets, an ever-increasing need for automated algorithms capable to handle complex non-linear relationships between variables has brought to uncover the power of Machine Learning for causality. In this paper, we carry out an evaluation of a public aid-scheme implemented in Italy and oriented to support investment of small and medium enterprises (SMEs) in occupational safety and health (OSH) for assessing the impact on the survival of corporations. A comparison of thirteen models is performed and the Individual Treatment Effect (ITE) estimated and validated based on the AUUC and Qini score for which best values of 0.064 and 0.407, respectively, are obtained based on the Light Gradient Boosting Machine (LightGBM). An additional in-depth statistical analysis also revealed that the best beneficiaries of the policy intervention are those firms that experience performance issues in the period just before the interventions and for which the increased liquidity brought by the policy may have prevented default.
RESUMEN
Multiple Sclerosis (MS) is an autoimmune disease that combines chronic inflammatory and neurodegenerative processes underlying different clinical forms of evolution, such as relapsing-remitting, secondary progressive, or primary progressive MS. This identification is usually performed by clinical evaluation at the diagnosis or during the course of the disease for the secondary progressive phase. In parallel, magnetic resonance imaging (MRI) analysis is a mandatory diagnostic complement. Identifying the clinical form from MR images is therefore a helpful and challenging task. Here, we propose a new approach for the automatic classification of MS forms based on conventional MRI (i.e., T1-weighted images) that are commonly used in clinical context. For this purpose, we investigated the morphological connectome features using graph based convolutional neural network. Our results obtained from the longitudinal study of 91 MS patients highlight the performance (F1-score) of this approach that is better than state-of-the-art as 3D convolutional neural networks. These results open the way for clinical applications such as disability correlation only using T1-weighted images.
RESUMEN
Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F1 score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet.
RESUMEN
Purpose: The main goal of this study is to investigate the discrimination power of Grey Matter (GM) thickness connectome data between Multiple Sclerosis (MS) clinical profiles using statistical and Machine Learning (ML) methods. Materials and Methods: A dataset composed of 90 MS patients acquired at the MS clinic of Lyon Neurological Hospital was used for the analysis. Four MS profiles were considered, corresponding to Clinical Isolated Syndrome (CIS), Relapsing-Remitting MS (RRMS), Secondary Progressive MS (SPMS), and Primary Progressive MS (PPMS). Each patient was classified in one of these profiles by our neurologist and underwent longitudinal MRI examinations including T1-weighted image acquisition at each examination, from which the GM tissue was segmented and the cortical GM thickness measured. Following the GM parcellation using two different atlases (FSAverage and Glasser 2016), the morphological connectome was built and six global metrics (Betweenness Centrality (BC), Assortativity (r), Transitivity (T), Efficiency (E g ), Modularity (Q) and Density (D)) were extracted. Based on their connectivity metrics, MS profiles were first statistically compared and second, classified using four different learning machines (Logistic Regression, Random Forest, Support Vector Machine and AdaBoost), combined in a higher level ensemble model by majority voting. Finally, the impact of the GM spatial resolution on the MS clinical profiles classification was analyzed. Results: Using binary comparisons between the four MS clinical profiles, statistical differences and classification performances higher than 0.7 were observed. Good performances were obtained when comparing the two early clinical forms, RRMS and PPMS (F1 score of 0.86), and the two neurodegenerative profiles, PPMS and SPMS (F1 score of 0.72). When comparing the two atlases, slightly better performances were obtained with the Glasser 2016 atlas, especially between RRMS with PPMS (F1 score of 0.83), compared to the FSAverage atlas (F1 score of 0.69). Also, the thresholding value for graph binarization was investigated suggesting more informative graph properties in the percentile range between 0.6 and 0.8. Conclusion: An automated pipeline was proposed for the classification of MS clinical profiles using six global graph metrics extracted from the GM morphological connectome of MS patients. This work demonstrated that GM morphological connectivity data could provide good classification performances by combining four simple ML models, without the cost of long and complex MR techniques, such as MR diffusion, and/or deep learning architectures.
RESUMEN
BACKGROUND AND PURPOSE: The aim of this study is to determine whether cerebral white matter (WM) microstructural damage, defined by decreased fractional anisotropy (FA) and increased axial (AD) and radial (RD) diffusivities, could be detected as accurately by measuring the T1/T2 ratio, in relapsing-remitting multiple sclerosis (RRMS) patients compared to healthy control (HC) subjects. METHODS: Twenty-eight RRMS patients and 24 HC subjects were included in this study. Region-based analysis based on the ICBM-81 diffusion tensor imaging (DTI) atlas WM labels was performed to compare T1/T2 ratio to DTI values in normal-appearing WM (NAWM) regions of interest. Lesions segmentation was also performed and compared to the HC global WM. RESULTS: A significant 19.65% decrease of T1/T2 ratio values was observed in NAWM regions of RRMS patients compared to HC. A significant 6.30% decrease of FA, as well as significant 4.76% and 10.27% increases of AD and RD, respectively, were observed in RRMS compared to the HC group in various NAWM regions. Compared to the global WM HC mask, lesions have significantly decreased T1/T2 ratio and FA and increased AD and RD (p < . 001). CONCLUSIONS: Results showed significant differences between RRMS and HC in both DTI and T1/T2 ratio measurements. T1/T2 ratio even demonstrated extensive WM abnormalities when compared to DTI, thereby highlighting the ratio's sensitivity to subtle differences in cerebral WM structural integrity using only conventional MRI sequences.
Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión Tensora/métodos , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patologíaRESUMEN
Background: Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by demyelination and neurodegeneration processes. It leads to different clinical courses and degrees of disability that need to be anticipated by the neurologist for personalized therapy. Recently, machine learning (ML) techniques have reached a high level of performance in brain disease diagnosis and/or prognosis, but the decision process of a trained ML system is typically nontransparent. Using brain structural connectivity data, a fully automatic ensemble learning model, augmented with an interpretable model, is proposed for the estimation of MS patients' disability, measured by the Expanded Disability Status Scale (EDSS). Materials and Methods: An ensemble of four boosting-based models (GBM, XGBoost, CatBoost, and LightBoost) organized following a stacking generalization scheme was developed using diffusion tensor imaging (DTI)-based structural connectivity data. In addition, an interpretable model based on conditional logistic regression was developed to explain the best performances in terms of white matter (WM) links for three classes of EDSS (low, medium, and high). Results: The ensemble model reached excellent level of performance (root mean squared error of 0.92 ± 0.28) compared with single-based models and provided a better EDSS estimation using DTI-based structural connectivity data compared with conventional magnetic resonance imaging measures associated with patient data (age, gender, and disease duration). Used for interpretation of the estimation process, the counterfactual method showed the importance of certain brain networks, corresponding mainly to left hemisphere WM links, connecting the left superior temporal with the left posterior cingulate and the right precuneus gray matter regions, and the interhemispheric WM links constituting the corpus callosum. Also, a better accuracy estimation was found for the high disability class. Conclusion: The combination of advanced ML models and sensitive techniques such as DTI-based structural connectivity demonstrated to be useful for the estimation of MS patients' disability and to point out the most important brain WM networks involved in disability. Impact statement An ensemble of "boosting" machine learning (ML) models was more performant than single models to estimate disability in multiple sclerosis. Diffusion tensor imaging (DTI)-based structural connectivity led to better performance than conventional magnetic resonance imaging. An interpretable model, based on counterfactual perturbation, highlighted the most relevant white matter fiber links for disability estimation. These findings demonstrated the clinical interest of combining DTI, graph modeling, and ML techniques.
Asunto(s)
Esclerosis Múltiple , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagenRESUMEN
BACKGROUND AND OBJECTIVE: Machine learning frameworks have demonstrated their potentials in dealing with complex data structures, achieving remarkable results in many areas, including brain imaging. However, a large collection of data is needed to train these models. This is particularly challenging in the biomedical domain since, due to acquisition accessibility, costs and pathology related variability, available datasets are limited and usually imbalanced. To overcome this challenge, generative models can be used to generate new data. METHODS: In this study, a framework based on generative adversarial network is proposed to create synthetic structural brain networks in Multiple Sclerosis (MS). The dataset consists of 29 relapsing-remitting and 19 secondary-progressive MS patients. T1 and diffusion tensor imaging (DTI) acquisitions were used to obtain the structural brain network for each subject. Evaluation of the quality of newly generated brain networks is performed by (i) analysing their structural properties and (ii) studying their impact on classification performance. RESULTS: We demonstrate that advanced generative models could be directly applied to the structural brain networks. We quantitatively and qualitatively show that newly generated data do not present significant differences compared to the real ones. In addition, augmenting the existing dataset with generated samples leads to an improvement of the classification performance (F1score 81%) with respect to the baseline approach (F1score 66%). CONCLUSIONS: Our approach defines a new tool for biomedical application when connectome-based data augmentation is needed, providing a valid alternative to usual image-based data augmentation techniques.