Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Andes Pediatr ; 95(1): 41-52, 2024 Feb.
Artículo en Español | MEDLINE | ID: mdl-38587343

RESUMEN

Sickle cell anemia (SCA) is the most common genetic disease worldwide. There are countries with massive public health programs for early detection of this condition. In the literature, several specific haplotypes or single-base polymorphic variants (SNPs) have been associated with the SCA prognosis. OBJECTIVE: To demonstrate the significant correlation of SNPs relevant to the diagnosis and prognosis of SCA among different ethnic groups. METHODOLOGY: we analyzed population frequencies and correlations of several SNPs related to the prognosis of SCA (i.e., baseline fetal hemoglobin levels), response to hydroxyurea treatment, and response to other drugs used in the SCA treatment, collected from validated genomic databases among different ethnic groups. RESULTS: The calculation of the Hardy-Weinberg equilibrium and the logistic regression was successful in classifying the ethnic groups as African (0 = 0.78, 1 = 0.89), and with a lower efficiency as American (AMR) (0 = 0.88, 1 = 0.00), East Asian (EAS) (0 = 0.80, 1 = 0.00), European (EUR) (0 = 0.79, 1 = 0.00), and South Asian (SAS) (0 = 0.80, 1 = 0.00). CONCLUSIONS: The results extend those from previous reports and show that the profile of most of the SNPs studied presented statistically significant distributions among general ethnic groups, pointing to the need to carry out massive early screening of relevant SNPs for SCA in patients diagnosed with this disease. It is concluded that the application of a broad mutation detection program will lead to a more personalized and efficient response in the treatment of SCA.


Asunto(s)
Anemia de Células Falciformes , Medicina de Precisión , Humanos , Anemia de Células Falciformes/diagnóstico , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Mutación , Etnicidad/genética , Pronóstico
2.
Artículo en Inglés | MEDLINE | ID: mdl-36901294

RESUMEN

BACKGROUND: Sympathetic stress stimulates norepinephrine (NE) release from sympathetic nerves. During pregnancy, it modifies the fetal environment, increases NE to the fetus through the placental NE transporter, and affects adult physiological functions. Gestating rats were exposed to stress, and then the heart function and sensitivity to in vivo adrenergic stimulation were studied in male progeny. METHODS: Pregnant Sprague-Dawley rats were exposed to cold stress (4 °C/3 h/day); rats' male progeny were euthanized at 20 and 60 days old, and their hearts were used to determine the ß-adrenergic receptor (ßAR) (radioligand binding) and NE concentration. The in vivo arterial pressure response to isoproterenol (ISO, 1 mg/kg weight/day/10 days) was monitored in real time (microchip in the descending aorta). RESULTS: Stressed male progeny presented no differences in ventricular weight, the cardiac NE was lower, and high corticosterone plasma levels were recorded at 20 and 60 days old. The relative abundance of ß1 adrenergic receptors decreased by 36% and 45%, respectively (p < 0.01), determined by Western blot analysis without changes in ß2 adrenergic receptors. A decrease in the ratio between ß1/ß2 receptors was found. Displacement of 3H-dihydroalprenolol (DHA) from a membrane fraction with propranolol (ß antagonist), atenolol (ß1 antagonist), or zinterol (ß2 agonist) shows decreased affinity but no changes in the ß-adrenergic receptor number. In vivo exposure to ISO to induce a ß-adrenergic overload provoked death in 50% of stressed males by day 3 of ISO treatment. CONCLUSION: These data suggest permanent changes to the heart's adrenergic response after rat progeny were stressed in the uterus.


Asunto(s)
Madres , Placenta , Ratas , Femenino , Masculino , Embarazo , Animales , Humanos , Ratas Sprague-Dawley , Placenta/metabolismo , Norepinefrina , Receptores Adrenérgicos beta/metabolismo , Adrenérgicos
3.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835133

RESUMEN

It has recently been demonstrated that aromatic bromination at C(2) abolishes all typical psychomotor, and some key prosocial effects of the entactogen MDMA in rats. Nevertheless, the influence of aromatic bromination on MDMA-like effects on higher cognitive functions remains unexplored. In the present work, the effects of MDMA and its brominated analog 2Br-4,5-MDMA (1 mg/kg and 10 mg/kg i.p. each) on visuospatial learning, using a radial, octagonal Olton maze (4 × 4) which may discriminate between short-term and long-term memory, were compared with their influence on in vivo long-term potentiation (LTP) in the prefrontal cortex in rats. The results obtained indicate that MDMA diminishes both short- and long-term visuospatial memory but increases LTP. In contrast, 2Br-4,5-MDMA preserves long-term visuospatial memory and slightly accelerates the occurrence of short-term memory compared to controls, but increases LTP, like MDMA. Taken together, these data are consistent with the notion that the modulatory effects induced by the aromatic bromination of the MDMA template, which abolishes typical entactogenic-like responses, might be extended to those effects affecting higher cognitive functions, such as visuospatial learning. This effect seems not to be associated with the increase of LTP in the prefrontal cortex.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina , Ratas , Animales , N-Metil-3,4-metilenodioxianfetamina/farmacología , Potenciación a Largo Plazo , Halogenación , Aprendizaje , Corteza Prefrontal , Aprendizaje por Laberinto
4.
Int J Mol Sci ; 23(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36233268

RESUMEN

A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets. In the present review, we summarize the neuroendocrine and neuroplastic modifications that underlie maladaptive mechanisms related to chronic hypertension programming after early undernutrition. First, we analyzed the role of glucocorticoids on the mechanism of long-term programming of hypertension. Secondly, we discussed the pathological plastic changes at the paraventricular nucleus of the hypothalamus that contribute to the development of chronic hypertension in animal models of prenatal undernutrition, dissecting the neural network that reciprocally communicates this nucleus with the locus coeruleus. Finally, we propose an integrated and updated view of the main neuroendocrine and central circuital alterations that support the occurrence of chronic increases of blood pressure in prenatally undernourished animals.


Asunto(s)
Hipertensión , Desnutrición , Efectos Tardíos de la Exposición Prenatal , Animales , Presión Sanguínea , Femenino , Glucocorticoides/fisiología , Humanos , Desnutrición/patología , Núcleo Hipotalámico Paraventricular , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología
5.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36077493

RESUMEN

A loss of neuroplastic control on nucleus accumbens (NAc) neuronal activity exerted by the medial prefrontal cortex (mPFC) through long-term depression (LTD) is involved in triggering drug-seeking behavior and relapse on several substances of abuse due to impaired glutamate homeostasis in tripartite synapses of the nucleus accumbens (NAc) core. To test whether this maladaptive neuroplastic mechanism underlies the addiction-like behavior induced in young mice by a high-fat diet (HFD), we utilized 28-days-old male mice fed HFD ad-libitum over 2 weeks, followed by 5 days of HFD abstinence. Control groups were fed a regular diet. HFD fed mice showed increased ΔFosB levels in the NAc core region, whereas LTD triggered from the mPFC became suppressed. Interestingly, LTD suppression was prevented by an i.p. injection of 100 mg/kg N-acetylcysteine 2.5 h before inducing LTD from the mPFC. In addition, excessive weight gain due to HFD feeding was diminished by adding 2mg/mL N-acetylcysteine in drinking water. Those results show a loss of neuroplastic mPFC control over NAc core activity induced by HFD consumption in young subjects. In conclusion, ad libitum consumption of HFD can lead to neuroplastic changes an addiction-like behavior that can be prevented by N-acetylcysteine, helping to decrease the rate of excessive weight gain.


Asunto(s)
Dieta Alta en Grasa , Núcleo Accumbens , Acetilcisteína/farmacología , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Masculino , Ratones , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/prevención & control , Corteza Prefrontal , Aumento de Peso
6.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806360

RESUMEN

Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1ß (IL-1ß) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary ß-subunit of GlyR (ßGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1ß in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1ß (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.


Asunto(s)
Núcleo Amigdalino Central , Neuralgia , Animales , Núcleo Amigdalino Central/metabolismo , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743148

RESUMEN

Pannexin 1 (Panx1) is involved in the spinal central sensitization process in rats with neuropathic pain, but its interaction with well-known, pain-related, ligand-dependent receptors, such as NMDA receptors (NMDAR) and P2X7 purinoceptors (P2X7R), remains largely unexplored. Here, we studied whether NMDAR- and P2X7R-dependent nociceptive signaling in neuropathic rats require the activation of Panx1 channels to generate spinal central sensitization, as assessed by behavioral (mechanical hyperalgesia) and electrophysiological (C-reflex wind-up potentiation) indexes. Administration of either a selective NMDAR agonist i.t. (NMDA, 2 mM) or a P2X7R agonist (BzATP, 150 µM) significantly increased both the mechanical hyperalgesia and the C-reflex wind-up potentiation, effects that were rapidly reversed (minutes) by i.t. administration of a selective pannexin 1 antagonist (10panx peptide, 300 µM), with the scores even reaching values of rats without neuropathy. Accordingly, 300 µM 10panx completely prevented the effects of NMDA and BzATP administered 1 h later, on mechanical hyperalgesia and C-reflex wind-up potentiation. Confocal immunofluorescence imaging revealed coexpression of Panx1 with NeuN protein in intrinsic dorsal horn neurons of neuropathic rats. The results indicate that both NMDAR- and P2X7R-mediated increases in mechanical hyperalgesia and C-reflex wind-up potentiation require neuronal Panx1 channel activation to initiate and maintain nociceptive signaling in neuropathic rats.


Asunto(s)
Conexinas/metabolismo , Hiperalgesia , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos P2X7 , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Hiperalgesia/metabolismo , N-Metilaspartato/metabolismo , Nocicepción , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Médula Espinal/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-35270735

RESUMEN

The exposure to sympathetic stress during the entire period of gestation (4 °C/3 h/day) strongly affects the postnatal reproductive performance of the first generation of female offspring and their fertility capacity. The aim of this work was to determine whether this exposure to sympathetic stress affects the reproductive capacity of the next three generations of female offspring as adults. Adult female Sprague-Dawley rats were mated with males of proven fertility. We studied the reproductive capacity of the second, third, and fourth generations of female offspring (the percentage of pregnancy and the number and weight of female offspring). The estrus cycle activity of the progenies was studied, and a morphological analysis of the ovaries was carried out to study the follicular population. The second generation had a lower number of pups per litter and a 20% decrease in fertile capacity. The estrus cycle activity of the third generation decreased even more, and they had a 50% decrease in their fertile capacity, and their ovaries presented polycystic morphology. The fourth generation however, recovered their reproductive capacity but not the amount of newborns pups. Most probably, the chronic intrauterine exposure to the sympathetic stress programs the female gonads to be stressed in a stressful environment; since the fourth generation was the first born with no direct exposure to stress during development, it opens studies on intrauterine factors affecting early follicular development.


Asunto(s)
Fertilidad , Efectos Tardíos de la Exposición Prenatal , Animales , Estro , Femenino , Masculino , Ovario , Embarazo , Ratas , Ratas Sprague-Dawley , Reproducción
9.
Front Pharmacol ; 13: 1031223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36744214

RESUMEN

The vesicular nucleotide transporter (VNUT) is critical for sympathetic co-transmission and purinergic transmission maintenance. To examine this proposal, we assessed whether the bisphosphonate clodronate, claimed as a potent in vitro VNUT blocker, modified spontaneous and/or the electrically evoked overflow of ATP/metabolites and NA from mesentery sympathetic perivascular nerve terminals. Additionally, in primary endothelial cell cultures derived from this tissue, we also evaluated whether clodronate interfered with ATP/metabolite cell outflow and metabolism of N6-etheno adenosine 5'-triphosphate (eATP), N6-etheno adenosine (eADO), and adenosine deaminase enzyme activity. Rat mesenteries were perfused in the absence or presence of .01-1,000 nM clodronate, 1-1,000 nM Evans blue (EB), and 1-10 µM DIDS; tissue perfusates were collected to determine ATP/metabolites and NA before, during, and after perivascular electrical nerve terminal depolarization. An amount of 1-1,000 nM clodronate did not modify the time course of ATP or NA overflow elicited by nerve terminal depolarization, and only 10 nM clodronate significantly augmented perfusate adenosine. Electrical nerve terminal stimulation increased tissue perfusion pressure that was significantly reduced only by 10 nM clodronate [90.0 ± 18.6 (n = 8) to 35.0 ± 10.4 (n = 7), p = .0277]. As controls, EB, DIDS, or reserpine treatment reduced the overflow of ATP/metabolites and NA in a concentration-dependent manner elicited by nerve terminal depolarization. Moreover, mechanical stimulation of primary endothelial cell cultures from the rat mesentery added with 10 or 100 nM clodronate increased adenosine in the cell media. eATP was metabolized by endothelial cells to the same extent with and without 1-1,000 nM clodronate, suggesting the bisphosphonate did not interfere with nucleotide ectoenzyme metabolism. In contrast, extracellular eADO remained intact, indicating that this nucleoside is neither metabolized nor transported intracellularly. Furthermore, only 10 nM clodronate inhibited (15.5%) adenosine metabolism to inosine in endothelial cells as well as in a commercial crude adenosine deaminase enzyme preparation (12.7%), and both effects proved the significance (p < .05). Altogether, present data allow inferring that clodronate inhibits adenosine deaminase activity in isolated endothelial cells as in a crude extract preparation, a finding that may account for adenosine accumulation following clodronate mesentery perfusion.

10.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34207980

RESUMEN

Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.


Asunto(s)
Hipertensión/patología , Hipotálamo/metabolismo , Desnutrición/complicaciones , Núcleo Hipotalámico Paraventricular/fisiopatología , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Presión Sanguínea , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca , Hipertensión/etiología , Hipertensión/fisiopatología , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas
11.
Front Pharmacol ; 12: 613105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746753

RESUMEN

Interleukin-1ß (IL-1ß) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1ß is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1ß may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) ß subunit (ßGlyR); however, no studies have evaluated the effect of IL-1ß on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1ß may modulate GlyR-mediated inhibitory activity via interactions with the ßGlyR subunit. Our results show that the application of IL-1ß (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1ß modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the ßGlyR subunit. The present results suggest that IL-1ß in the CeA controls glycinergic neurotransmission, possibly via interactions with the ßGlyR subunit. This effect could be relevant for understanding how IL-1ß released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.

12.
J Infect Dis ; 223(2): 258-267, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32572470

RESUMEN

BACKGROUND: Dengue human infection models (DHIM) have been used as a safe means to test the viability of prophylaxis and therapeutics. METHODS: A phase 1 study of 12 healthy adult volunteers using a challenge virus, DENV-1-LVHC strain 45AZ5, was performed. A dose escalating design was used to determine the safety and performance profile of the challenge virus. Subjects were evaluated extensively until 28 days and then out to 6 months. RESULTS: Twelve subjects received the challenge virus: 6 with 0.5 mL of 6.5 × 103 plaque-forming units (PFU)/mL (low-dose group) and 6 with 0.5 mL of 6.5 × 104 PFU/mL (mid-dose group). All except 1 in the low-dose group developed detectable viremia. For all subjects the mean incubation period was 5.9 days (range 5-9 days) and mean time of viremia was 6.8 days (range 3-9 days). Mean peak for all subjects was 1.6 × 107 genome equivalents (GE)/mL (range 4.6 × 103 to 5 × 107 GE/mL). There were no serious adverse events or long-term safety signals noted. CONCLUSIONS: We conclude that DENV-1-LVHC was well-tolerated, resulted in an uncomplicated dengue illness, and may be a suitable DHIM for therapeutic and prophylactic product testing. CLINICAL TRIALS REGISTRATION: NCT02372175.


Asunto(s)
Vacunas contra el Dengue/inmunología , Virus del Dengue/inmunología , Dengue/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Dengue/inmunología , Dengue/virología , Vacunas contra el Dengue/administración & dosificación , Vacunas contra el Dengue/efectos adversos , Voluntarios Sanos , Humanos , Evaluación de Resultado en la Atención de Salud , Vacunación , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/efectos adversos , Viremia/inmunología , Viremia/prevención & control , Viremia/virología
13.
J Infect Dis ; 221(7): 1057-1069, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31755526

RESUMEN

BACKGROUND: Dengue is a global health problem requiring an effective, safe dengue vaccine. METHODS: We report the results of a phase II, randomized, open-label, single-center trial in adults aged 18 to 45 years in the United States designed to explore the effects of the Chimeric Yellow Fever Derived Tetravalent Dengue Vaccine (CYD-TDV, Dengvaxia) when administered on its designated schedule (months 0, 6, and 12) or on an accelerated dosing schedule (months 0, 2, and 6) and/or given before, or concomitantly with, a vaccine against Japanese encephalitis (JE). RESULTS: Based on dengue virus serotype-specific neutralizing antibody (NAb), the accelerated dosing schedule was comparable to the 0, 6, and 12-month schedule. Giving JE vaccine concurrently with CYD-TDV did not result in an increase in overall NAb titers. Immunophenotyping of peripheral blood mononuclear cells revealed an increase in activated CD8+ T cells after CYD-TDV vaccination, a phenomenon that was greatest for the JE vaccine primed. CONCLUSIONS: We conclude that an accelerated dosing schedule of CYD-TDV results in essentially equivalent dengue serotype-specific NAb titers as the currently used schedule, and there may be an early benefit in antibody titers and activated CD8+ T cells by the administration of the JE vaccine before CYD-TDV vaccination.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra el Dengue/administración & dosificación , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Adolescente , Adulto , Vacunas contra el Dengue/efectos adversos , Vacunas contra el Dengue/inmunología , Femenino , Humanos , Esquemas de Inmunización , Inmunofenotipificación , Vacunas contra la Encefalitis Japonesa/efectos adversos , Vacunas contra la Encefalitis Japonesa/inmunología , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Front Pharmacol ; 10: 157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873030

RESUMEN

The entactogen MDMA (3,4-methylenedioxy-methamphetamine, "Ecstasy") exerts its psychotropic effects acting primarily as a substrate of the serotonin transporter (SERT) to induce a non-exocytotic release of serotonin. Nevertheless, the roles of specific positions of the aromatic ring of MDMA associated with the modulation of typical entactogenic effects, using analogs derived from the MDMA template, are still not fully understood. Among many possibilities, aromatic halogenation of the phenylalkylamine moiety may favor distribution to the brain due to increased lipophilicity, and sometimes renders psychotropic substances of high affinity for their molecular targets and high potency in humans. In the present work, a new MDMA analog brominated at C(2) of the aromatic ring (2-Br-4,5-MDMA) has been synthesized and pharmacologically characterized in vitro and in vivo. First, binding competition experiments against the SERT-blocker citalopram were carried out in human platelets and compared with MDMA. Besides, its effects on platelet aggregation were performed in platelet enriched human plasma using collagen as aggregation inductor. Second, as platelets are considered an appropriate peripheral model for estimating central serotonin availability, the functional effects of 2-Br-4,5-MDMA and MDMA on ATP release during human platelet aggregation were evaluated. The results obtained showed that 2-Br-4,5-MDMA exhibits higher affinity for SERT than MDMA and fully abolishes both platelet aggregation and ATP release, resembling the pharmacological profile of citalopram. Subsequent in vivo evaluation in rats at three dose levels showed that 2-Br-4,5-MDMA lacks all key MDMA-like behavioral responses in rats, including hyperlocomotion, enhanced active avoidance conditioning responses and increased social interaction. Taken together, the results obtained are consistent with the notion that 2-Br-4,5-MDMA should not be expected to be an MDMA-like substrate of SERT, indicating that aromatic bromination at C(2) modulates the pharmacodynamic properties of the substrate MDMA, yielding a citalopram-like compound.

15.
Behav Brain Res ; 363: 182-190, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30721762

RESUMEN

Moderate reduction of dietary protein (from 25% to 8% casein) in pregnant rats, calorically compensated by carbohydrates, gives rise to 'hidden prenatal malnutrition' (HPM) in the offspring since it does not alter body and brain weights of pups at birth. However, this dietary treatment leads to decreased ß-adrenoceptor signaling and brain derived neurotrophic factor (BDNF) levels in the pup' brain, altogether with defective cortical long-term potentiation (LTP) and lowered visuospatial memory performance. Since early postnatal environmental enrichment (EE) has been shown to exert plastic effects on the developing brain and neuroprotection both on cognition and on structural properties of the neocortex, in the present study we addressed the question of whether early postnatal EE during the lactation period could exert compensatory changes in the expression of ®-adrenergic receptors and BDNF in the neocortex of HPM rats, and if these effects are associated with an improvement or even a restore of both neocortical LTP in vivo and cognitive performance induced by HPM. The results obtained show that EE restored ß-adrenoceptor density, BDNF expression and the ability to support LTP at prefrontal and occipital cortices of HPM rats. Besides, EE improved learning performance in visuospatial and operant conditioning tasks. The latter support the notion that adequate maternal protein nutrition during pregnancy is required for proper brain development and function. Further, the results highlight the role of environmental enrichment during early postnatal life in increasing later brain plasticity and exerting neuroprotection against brain deficits induced by prenatal malnutrition.


Asunto(s)
Corteza Cerebral/fisiología , Aprendizaje/fisiología , Atención Posnatal/métodos , Animales , Animales Recién Nacidos/psicología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/fisiología , Femenino , Potenciación a Largo Plazo/fisiología , Masculino , Desnutrición/fisiopatología , Memoria/fisiología , Neocórtex/fisiopatología , Plasticidad Neuronal/fisiología , Lóbulo Occipital/fisiopatología , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo
16.
Nutr Rev ; 77(2): 65-80, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445479

RESUMEN

Studies in rats have shown that a decrease in either protein content or total dietary calories results in molecular, structural, and functional changes in the cerebral cortex and hippocampus, among other brain regions, which lead to behavioral disturbances, including learning and memory deficits. The neurobiological bases underlying those effects depend at least in part on fetal programming of the developing brain, which in turn relies on epigenetic regulation of specific genes via stable and heritable modifications of chromatin. Prenatal malnutrition also leads to epigenetic programming of obesity, and obesity on its own can lead to poor cognitive performance in humans and experimental animals, complicating understanding of the factors involved in the fetal programming of neuroplasticity deficits. This review focuses on the role of epigenetic mechanisms involved in prenatal malnutrition-induced brain disturbances, which are apparent at a later postnatal age, through either a direct effect of fetal programming on brain plasticity or an indirect effect on the brain mediated by the postnatal development of obesity.


Asunto(s)
Epigénesis Genética , Desarrollo Fetal , Trastornos Nutricionales en el Feto , Efectos Tardíos de la Exposición Prenatal , Animales , Encéfalo/crecimiento & desarrollo , Femenino , Humanos , Síndrome Metabólico , Plasticidad Neuronal , Obesidad , Embarazo
17.
J Child Neurol ; 34(2): 81-85, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30421639

RESUMEN

IMPORTANCE: Congenital Zika syndrome virus infection is said to interfere in children's development. OBJECTIVE: evaluate gross motor trajectories and the frequency of cerebral palsy in children with congenital Zika syndrome. DESIGN: Cohort study applying the Alberta Infant Motor Scale (AIMS) and the Bayley III Scales in infants from 6 to 18 months of age. SETTING: The SARAH network, Rio de Janeiro. PARTICIPANTS: Thirty-nine infants whose diagnoses were established through clinical history, serology tests, and neuroimaging findings. Main outcomes and measures: Congenital Zika syndrome is associated with severe motor delays and is a risk factor to the diagnosis of cerebral palsy. RESULTS: The Alberta Infant Motor Scale mean raw score at 6 months was 9.74 (SD 4.80) or equivalent to 2 to 3 months of motor developmental age. At the age of 12 months, 14.13 (SD 11.90), corresponding to 3 to 4 months of motor development age; the Bayley III Scales results correlated to the Alberta Infant Motor Scale ( P < .001) at this age. At 18 months, 15.77 (SD 13.80) or a motor development equivalent to 4 to 5 months of age. Thirty-five of 39 children (89.7%) met criteria for the diagnosis of cerebral palsy. Conclusions and relevance: Gross motor development marginally progresses from 6 to 18 months of age. These individuals also displayed a high frequency of cerebral palsy.


Asunto(s)
Parálisis Cerebral/fisiopatología , Desarrollo Infantil/fisiología , Destreza Motora/fisiología , Infección por el Virus Zika/fisiopatología , Parálisis Cerebral/etiología , Femenino , Humanos , Lactante , Masculino , Factores de Riesgo , Infección por el Virus Zika/complicaciones
18.
Pharmacol Res ; 101: 65-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26255765

RESUMEN

Ligand-gated ion channels (LGICs) are cell surface integral proteins that mediate the fast neurotransmission in the nervous system. LGICs require auxiliary subunits for their trafficking, assembly and pharmacological modulation. Auxiliary subunits do not form functional homomeric receptors, but are reported to assemble with the principal subunits in order to modulate their pharmacological profiles. For example, nACh receptors are built at least by co-assemble of α and ß subunits, and the neuronal auxiliary subunits ß3 and α5 and muscle type ß, δ, γ, and ϵ determine the agonist affinity of these receptors. Serotonergic 5-HT3B, 5-HT3C, 5-HT3D and 5-HT3E are reported to assemble with the 5-HT3A subunit to modulate its pharmacological profile. Functional studies evaluating the role of γ2 and δ auxiliary subunits of GABAA receptors have made important advances in the understanding of the action of benzodiazepines, ethanol and neurosteroids. Glycine receptors are composed principally by α1-3 subunits and the auxiliary subunit ß determines their synaptic location and their pharmacological response to propofol and ethanol. NMDA receptors appear to be functional as heterotetrameric channels. So far, the existence of NMDA auxiliary subunits is controversial. On the other hand, Kainate receptors are modulated by NETO 1 and 2. AMPA receptors are modulated by TARPs, Shisa 9, CKAMP44, CNIH2-3 auxiliary proteins reported that controls their trafficking, conductance and gating of channels. P2X receptors are able to associate with auxiliary Pannexin-1 protein to modulate P2X7 receptors. Considering the pharmacological relevance of different LGICs auxiliary subunits in the present work we will highlight the therapeutic potential of these modulator proteins.


Asunto(s)
Canales Iónicos Activados por Ligandos/efectos de los fármacos , Animales , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Modelos Moleculares , Subunidades de Proteína , Receptores AMPA/química , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Receptores de Glicina/química , Receptores de Glicina/efectos de los fármacos , Receptores de Glicina/metabolismo , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/efectos de los fármacos , Receptores Purinérgicos P2X/metabolismo , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/efectos de los fármacos , Receptores de Serotonina 5-HT3/metabolismo
19.
Neurobiol Learn Mem ; 119: 1-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25464009

RESUMEN

Moderate reduction in dietary protein composition of pregnant rats from 25% to 8% casein, calorically compensated by carbohydrates, has been described as a "hidden malnutrition" because it does not alter body and brain weights of pups at birth. However, this dietary treatment leads to altered central noradrenergic systems, impaired cortical long-term potentiation (LTP) and worsened visuo-spatial memory performance. Given the increasing interest on the role played by ß2-adrenoceptors (ß2-ARs) on brain plasticity, the present study aimed to address the following in hidden-malnourished and eutrophic control rats: (i) the expression levels of ß2-ARs in the frontal cortex determined by immunohistochemistry, and (ii) the effect of the ß2 selective agonist clenbuterol on both LTP elicited in vivo in the prefrontal cortex and visuospatial performance measured in an eight-arm radial maze. Our results showed that, prenatally malnourished rats exhibited a significant reduction of neocortical ß2-AR expression in adulthood. Concomitantly, they were unable to elicit and maintain prefrontal cortex LTP and exhibited lower visuospatial learning performance. Administration of clenbuterol (0.019, 0.038 and 0.075 mg/kg i.p.) enhanced LTP in malnourished and control animals and restored visuospatial learning performance in malnourished but not in normal rats, in a dose-dependent manner. The results suggest that decreased density of neocortical ß2-ARs during postnatal life, subsequent to hidden prenatal malnutrition might affect some synaptic networks required to elicit neocortical LTP and form visuospatial memory, since those neuroplastic deficits were counteracted by ß2-AR stimulation.


Asunto(s)
Lóbulo Frontal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Desnutrición Proteico-Calórica/fisiopatología , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Animales , Clenbuterol/administración & dosificación , Femenino , Lóbulo Frontal/metabolismo , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Desnutrición Proteico-Calórica/metabolismo , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Ratas , Ratas Sprague-Dawley , Memoria Espacial/efectos de los fármacos , Memoria Espacial/fisiología
20.
Reproduction ; 148(2): 137-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24811779

RESUMEN

Chronic cold stress applied to adult rats activates ovarian sympathetic innervation and develops polycystic ovary (PCO) phenotype. The PCO syndrome in humans originates during early development and is expressed before or during puberty, which suggests that the condition derived from in utero exposure to neural- or metabolic-derived insults. We studied the effects of maternal sympathetic stress on the ovarian follicular development and on the onset of puberty of female offspring. Timed pregnant rats were exposed to chronic cold stress (4 °C, 3 h/daily from 1000 to 1300 h) during the entire pregnancy. Neonatal rats exposed to sympathetic stress during gestation had a lower number of primary, primordial, and secondary follicles in the ovary and a lower recruitment of primary and secondary follicles derived from the primordial follicular pool. The expression of the FSH receptor and response of the neonatal ovary to FSH were reduced. A decrease in nerve growth factor (NGF) mRNA was found without change in the low-affinity NGF receptor. The FSH-induced development of secondary follicles was decreased. At puberty, estradiol plasma levels decreased without changes in LH plasma levels. Puberty onset (as shown by the vaginal opening) was delayed. Ovarian norepinephrine (NE) was reduced; there was no change in its metabolite, 3-methoxy-4-hydroxyphenylglycol, in stressed rats and no change in NE turnover. The changes in ovarian NE in prepubertal rats stressed during gestation could represent a lower development of sympathetic nerves as a compensatory response to the chronically increased NE levels during gestation and hence participate in delaying reproductive performance in the rat.


Asunto(s)
Conducta Materna , Folículo Ovárico/patología , Pubertad , Maduración Sexual , Sistema Nervioso Simpático/patología , Vagina/patología , Animales , Células Cultivadas , AMP Cíclico/metabolismo , Ensayo de Inmunoadsorción Enzimática , Estradiol/sangre , Ciclo Estral/metabolismo , Femenino , Técnicas para Inmunoenzimas , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Norepinefrina/metabolismo , Folículo Ovárico/metabolismo , Embarazo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sistema Nervioso Simpático/metabolismo , Vagina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA