Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
2.
J Dent ; 127: 104296, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36116542

RESUMEN

OBJECTIVES: To assess whether the dissolution products of S53P4 bioactive glass (BG) affect cellular response of macrophages and clinically relevant peri­implant cell populations to dental implant particles in vitro. Cells chosen were human gingival fibroblasts (HGFs), osteoblasts and bone marrow derived stromal cells (HBMSCs). METHODS: Melt-derived S53P4 bioactive glass were prepared. HGFs, Saos-2 human osteoblastic cell line, HBMSCs and macrophages, derived from THP-1 human monocytic cell line, were cultured in the presence of particles from commercially pure titanium (Ti-CP4), grade 5 titanium alloy (Ti-6Al-4V), titanium-zirconium alloy (Ti-15Zr) or zirconia (Zr) (with respective diameters of 34.1 ± 3.8, 33.3 ± 4.4, 97.8 ± 8.2 and 71.3 ± 6.1 µm) with or without S53P4 dissolution products (conditioned media contained 327.30 ± 2.01 ppm Ca, 51.34 ± 0.41 ppm P and 61.48 ± 1.17 ppm Si, pH 8.01 ± 0.21). Inflammatory and macrophage polarisation markers including TNF-ɑ, IL-1, IL-6 and CD206 were quantified using enzyme-linked immunosorbent assay (ELISA). RESULTS: The presence of Ti-6Al-4V implant particles significantly induced the expression of pro-inflammatory markers in all tested cell types. S53P4 BG dissolution products regressed the particle induced up-regulation of pro-inflammatory markers and, appeared to suppress M1 macrophage polarisation. CONCLUSIONS: Implant particles, Ti-6Al-4V in particular, resulted in significant inflammatory responses from cells. S53P4 BG may possess anti-inflammatory properties and potentially mediate macrophage polarisation behaviour. CLINICAL SIGNIFICANCE: The findings highlight that the use and benefits of BG is a promising field of study. Authors believe more collective efforts are required to fully understand the reliability, efficiency and exact mechanisms of action of BG in the search for new generation of treatment modalities in dentistry.


Asunto(s)
Aleaciones , Titanio , Humanos , Titanio/farmacología , Reproducibilidad de los Resultados , Propiedades de Superficie , Materiales Dentales/farmacología , Materiales Biocompatibles , Antiinflamatorios
3.
Clin Exp Dent Res ; 7(6): 1037-1044, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34018703

RESUMEN

OBJECTIVES: Grade V titanium alloy (Ti-6Al-4 V) is a well-recognized metallic biomaterial for medical implants. There has been some controversy regarding the use of this alloy in medical devices in relation to the toxicity of vanadium. In Dentistry, Ti-6Al-4 V remains prevalent. This systematic review aims to evaluate the effects of Ti-6Al-4 V on cells relevant to oral environments such as gingival fibroblasts. MATERIALS AND METHODS: A literature search was undertaken for relevant English language publications in the following databases: Dental and Oral Science, Medline and Web of Science. The electronic search was supplemented with a search of references. RESULTS: After application of inclusion and exclusion criteria. A total of eight papers are included in this review. These papers were all in vitro studies and were categorized into whole implant, discs, or implant particles based on the type of test materials used in the studies. CONCLUSION: Based on the analyses of the eight included studies in this review, if Ti-6Al-4 V as a material is unchallenged, i.e., as a whole implant in pH neutral environments, there appears to be little effect on fibroblasts. If Ti-6Al-4 V is challenged through corrosion or wear (particle release), the subsequent release of vanadium and aluminium particles has an increased cytotoxic effect in vitro in comparison to commercially pure titanium, hence concerns should be raised in the clinical setting.


Asunto(s)
Aleaciones , Implantes Dentales , Implantes Dentales/efectos adversos , Fibroblastos , Ensayo de Materiales , Titanio/toxicidad
4.
Int J Implant Dent ; 6(1): 50, 2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918144

RESUMEN

BACKGROUND: With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. MATERIALS AND METHODS: Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. RESULTS: Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. CONCLUSION: There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA