RESUMEN
Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG). The impact of fuel aromatic content was examined for the diesel car and the gasoline car without the GPF. The results showed that the utilization of exhaust particulate filter was important both in diesel and gasoline cars. The gasoline car without the GPF emitted relatively high concentrations of particles compared to the other technologies but the implementation of the GPF decreased particle emissions, and the potential to form secondary aerosols in atmospheric processes. The diesel car equipped with the DPF emitted low particle number concentrations except during the DPF regeneration events. Aromatic-free gasoline and diesel fuel efficiently reduced exhaust particles. Since the renewal of vehicle fleet is a relatively slow process, changing the fuel composition can be seen as a faster way to affect traffic emissions.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Gasolina , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis , Automóviles , Polvo , Aerosoles , Vehículos a Motor , Material Particulado/análisisRESUMEN
Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric.
RESUMEN
The differences in the traffic fuels have been shown to affect exhaust emissions and their toxicity. Especially, the aromatic content of diesel fuel is an important factor considering the emissions, notably particulate matter (PM) concentrations. The ultra-fine particles (UFP, particles with a diameter of <100 nm) are important components of engine emissions and connected to various health effects, such as pulmonary and systematic inflammation, and cardiovascular disorders. Studying the toxicity of the UFPs and how different fuel options can be used for mitigating the emissions and toxicity is crucial. In the present study, emissions from a heavy-duty diesel engine were used to assess the exhaust emission toxicity with a thermophoresis-based in vitro air-liquid interface (ALI) exposure system. The aim of the study was to evaluate the toxicity of engine exhaust and the potential effect of 20 % aromatic fossil diesel and 0 % aromatic renewable diesel fuel on emission toxicity. The results of the present study show that the aromatic content of the fuel increases emission toxicity, which was seen as an increase in genotoxicity, distinct inflammatory responses, and alterations in the cell cycle. The increase in genotoxicity was most likely due to the PM phase of the exhaust, as the exposures with high-efficiency particulate absorbing (HEPA)-filtered exhaust resulted in a negligible increase in genotoxicity. However, the solely gaseous exposures still elicited immunological responses. Overall, the present study shows that decreasing the aromatic content of the fuels could be a significant measure in mitigating traffic exhaust toxicity.
Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Gasolina/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Material Particulado/toxicidad , Material Particulado/análisis , GasesRESUMEN
Urban air fine particles are a major health-relating problem. However, it is not well understood how the health-relevant features of fine particles should be monitored. Limitations of PM2.5 (mass concentration of sub 2.5 µm particles), which is commonly used in the health effect estimations, have been recognized and, e.g., World Health Organization (WHO) has released good practice statements for particle number (PN) and black carbon (BC) concentrations (2021). In this study, a characterization of urban wintertime aerosol was done in three environments: a detached housing area with residential wood combustion, traffic-influenced streets in a city centre and near an airport. The particle characteristics varied significantly between the locations, resulting different average particle sizes causing lung deposited surface area (LDSA). Near the airport, departing planes had a major contribution on PN, and most particles were smaller than 10 nm, similarly as in the city centre. The high hourly mean PN (>20 000 1/cm3) stated in the WHO's good practices was clearly exceeded near the airport and in the city centre, even though traffic rates were reduced due to a SARS-CoV-2-related partial lockdown. In the residential area, wood combustion increased both BC and PM2.5, but also PN of sub 10 and 23 nm particles. The high concentrations of sub 10 nm particles in all the locations show the importance of the chosen lower size limit of PN measurement, e.g., WHO states that the lower limit should be 10 nm or smaller. Furthermore, due to ultrafine particle emissions, LDSA per unit PM2.5 was 1.4 and 2.4 times higher near the airport than in the city centre and the residential area, respectively, indicating that health effects of PM2.5 depend on urban environment as well as conditions, and emphasizing the importance of PN monitoring in terms of health effects related to local pollution sources.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , SARS-CoV-2 , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Contaminación del Aire/análisis , Tamaño de la Partícula , Pulmón/química , Hollín , Emisiones de Vehículos/análisisRESUMEN
The ageing of the population poses urgent challenges to the health and social protection sectors, including the need for greater adequacy and integration of health care services provided to older people. It is considered necessary and urgent to understand the state-of-the-art of community-based models of care for older people in institutional care and at home. This study aims to map the concepts that politicians and providers need to address through an umbrella review as a review method. Articles describing the structuring aspects of care models appropriate to the needs in long-term care and systematic reviews or meta-analyses targeting people aged 65 years or more were considered. A total of 350 studies met the inclusion criteria and were included in the review. The results identified the need to contribute to effective and more efficient integration and articulation of all the stakeholders, based essentially on professional care at the patient's homes, focused on their needs using the available technologies, empowering patients and families. Eight categories emerged that addressed factors and variables involved in care models for the long-term care needs of institutionalised and home-based older people as a guarantee of accessibility to healthcare and to enhance the well-being and quality of life of patients and family caregivers.
Asunto(s)
Cuidados a Largo Plazo , Calidad de Vida , Humanos , Anciano , Envejecimiento , Cuidadores , Instituciones de SaludRESUMEN
Amines are recognized as key compounds in new particle formation (NPF) and secondary organic aerosol (SOA) formation. In addition, ozonolysis of α-pinene contributes substantially to the formation of biogenic SOAs in the atmosphere. In the present study, ozonolysis of α-pinene in the presence of dimethylamine (DMA) was investigated in a flow tube reactor. Effects of amines on SOA formation and chemical composition were examined. Enhancement of NPF and SOA formation was observed in the presence of DMA. Chemical characterization of gas- and particle-phase products by high-resolution mass spectrometric techniques revealed the formation of nitrogen containing compounds. Reactions between ozonolysis reaction products of α-pinene, such as pinonaldehyde or pinonic acid, and DMA were observed. Possible reaction pathways are suggested for the formation of the reaction products. Some of the compounds identified in the laboratory study were also observed in aerosol samples (PM1) collected at the SMEAR II station (Hyytiälä, Finland) suggesting that DMA might affect the ozonolysis of α-pinene in ambient conditions.
Asunto(s)
Contaminantes Atmosféricos , Dimetilaminas , Monoterpenos/química , Aerosoles , Monoterpenos Bicíclicos , Finlandia , OzonoRESUMEN
Pinonaldehyde, which is among the most abundant oxidation products of α-pinene, and dimethylamine were selected to study the formation of N-containing low volatile compounds from aldehyde-amine reactions in the atmosphere. Gas phase reactions took place in a Tedlar bag, which was connected to a mass spectrometer ionization source via a short deactivated fused silica column. In addition to on-line analysis, abundance of gaseous precursors and reaction products were monitored off-line. Condensable products were extracted from the bag's walls with a suitable solvent and analyzed by gas chromatography coupled to chemical ionization high-resolution quadrupole time-of-flight mass spectrometry and by ultra-high-performance liquid chromatography coupled to electrospray ionization Orbitrap mass spectrometry. The reactions carried out resulted in several mid-low vapor pressure nitrogen-containing compounds that are potentially important for the formation of secondary organic aerosols in the atmosphere. Further, the presence of brown carbon, confirmed by liquid chromatography-UV-vis-mass spectrometry, was observed. Some of the compounds identified in the laboratory study were also observed in aerosol samples collected at SMEAR II station (Hyytiälä, Finland) in August 2015 suggesting the importance of aldehyde-amine reactions for the aerosol formation and growth.
Asunto(s)
Atmósfera/química , Nitrógeno , Aerosoles , Dimetilaminas , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
We introduce the mathematical concept of multifractality and describe various multifractal spectra for dynamical systems, including spectra for dimensions and spectra for entropies. We support the study by providing some physical motivation and describing several nontrivial examples. Among them are subshifts of finite type and one-dimensional Markov maps. An essential part of the article is devoted to the concept of multifractal rigidity. In particular, we use the multifractal spectra to obtain a "physical" classification of dynamical systems. For a class of Markov maps, we show that, if the multifractal spectra for dimensions of two maps coincide, then the maps are differentiably equivalent. (c) 1997 American Institute of Physics.