Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177232

RESUMEN

The great geometric complexity that additive manufacturing allows in parts, together with the possibility of combining several materials in the same part, establishes a new design and manufacturing paradigm. Despite the interest of many leading sectors, the lack of standardization still makes it necessary to carry out characterization work to enjoy these advantages in functional parts. In many of these techniques, the process does not end with the end of the machine cycle, but different post-processing must be carried out to consider the part finished. It has been found that the type of post process applied can have a similar effect on part quality as other further studied process parameters. In this work, the material projection technique was used to manufacture multi-material parts combining resins with different mechanical properties. The influence of different post-processing on the tensile behavior of these parts was analyzed. The results show the detrimental effect of ultrasonic treatment with isopropyl alcohol in the case of the more flexible resin mixtures, being advisable to use ultrasonic with mineral oil or furnace treatment. For more rigid mixtures, the furnace is the best option, although the other post-processing techniques do not significantly deteriorate their performance.

2.
Materials (Basel) ; 13(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872443

RESUMEN

The objective of our research is to improve the properties of calcium-sulphate hemihydrate parts printed by binder jetting. In this paper, we show the thermal treatment results when using temperature time ramps on binder-jetted ceramic parts without infiltrating. The results show that the mechanical properties of printed parts are improved substantially. Two different thermal cycles were investigated for their effect on the dehydration process of CaSO4·½H2O using infrared analysis. The thermal-treated samples were compared with respect to porosity, surface roughness, compression strength and dimensional and weight variation. The proposed thermal treatment significantly improves the compression strength in a short time, guaranteeing dimensional stability while providing a good surface. This improvement in mechanical properties offers a great chance for using binder-jetted parts as functional components, for example, in the casting field or the medical sector (scaffolds).

3.
Sensors (Basel) ; 20(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512944

RESUMEN

Metal additive manufacturing (AM) allows obtaining functional parts with the possibility of optimizing them topologically without affecting system performance. This is of great interest for sectors such as aerospace, automotive, and medical-surgical. However, from a metrological point of view, the high requirements applied in these sectors constitute a challenge for inspecting these types of parts. Non-contact inspection has gained great relevance due to the rapid verification of AM parts. Optical measurement systems (OMSs) are being increasingly adopted for geometric dimensioning and tolerancing (GD&T) verification within the context of Industry 4.0. In this paper, the suitability (advantages and limitations) of five different OMSs (based on laser triangulation, conoscopic holography, and structured light techniques) for GD&T verification of parts manufactured by selective laser melting (SLM) is analyzed. For this purpose, a specific testing part was designed and SLM-manufactured in 17-4PH stainless steel. Once the part was measured by contact (obtaining the reference GD&T values), it was optically measured. The scanning results allow comparing the OMSs in terms of their inspection speed as well as dimensional and geometrical accuracy. As a result, two portable systems (handheld laser triangulation and structured blue-light scanners) were identified as the most accurate optical techniques for scanning SLM parts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA