Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
HGG Adv ; : 100323, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944683

RESUMEN

Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n=378), compared to 0.24% of controls (odds ratio (OR)=12.3, p=1.27x10-10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax=46.5, p=1.74x10-15). Association signals for X-chromosomal TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1 and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19, and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway.

2.
Aging Cell ; 22(6): e13821, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36951231

RESUMEN

Aging biology entails a cell/tissue deregulated metabolism that affects all levels of biological organization. Therefore, the application of "omic" techniques that are closer to phenotype, such as metabolomics, to the study of the aging process should be a turning point in the definition of cellular processes involved. The main objective of the present study was to describe the changes in plasma metabolome associated with biological aging and the role of sex in the metabolic regulation during aging. A high-throughput untargeted metabolomic analysis was applied in plasma samples to detect hub metabolites and biomarkers of aging incorporating a sex/gender perspective. A cohort of 1030 healthy human adults (45.9% females, and 54.1% males) from 50 to 98 years of age was used. Results were validated using two independent cohorts (1: n = 146, 53% females, 30-100 years old; 2: n = 68, 70% females, 19-107 years old). Metabolites related to lipid and aromatic amino acid (AAA) metabolisms arose as the main metabolic pathways affected by age, with a high influence of sex. Globally, we describe changes in bioenergetic pathways that point to a decrease in mitochondrial ß-oxidation and an accumulation of unsaturated fatty acids and acylcarnitines that could be responsible for the increment of oxidative damage and inflammation characteristic of this physiological process. Furthermore, we describe for the first time the importance of gut-derived AAA catabolites in the aging process describing novel biomarkers that could contribute to better understand this physiological process but also age-related diseases.


Asunto(s)
Aminoácidos Aromáticos , Metaboloma , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Adulto Joven , Aminoácidos Aromáticos/metabolismo , Envejecimiento/metabolismo , Metabolómica/métodos , Biomarcadores/metabolismo
3.
Cell Rep ; 42(4): 112297, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36961816

RESUMEN

Anti-tumor efficacy of targeted therapies is variable across patients and cancer types. Even in patients with initial deep response, tumors are typically not eradicated and eventually relapse. To address these challenges, we present a systematic screen for targets that limit the anti-tumor efficacy of EGFR and ALK inhibitors in non-small cell lung cancer and BRAF/MEK inhibitors in colorectal cancer. Our approach includes genome-wide CRISPR screens with or without drugs targeting the oncogenic driver ("anchor therapy"), and large-scale pairwise combination screens of anchor therapies with 351 other drugs. Interestingly, targeting of a small number of genes, including MCL1, BCL2L1, and YAP1, sensitizes multiple cell lines to the respective anchor therapy. Data from drug combination screens with EGF816 and ceritinib indicate that dasatinib and agents disrupting microtubules act synergistically across many cell lines. Finally, we show that a higher-order-combination screen with 26 selected drugs in two resistant EGFR-mutant lung cancer cell lines identified active triplet combinations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas B-raf/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Recurrencia Local de Neoplasia/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB/genética , Proteínas Tirosina Quinasas Receptoras/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación , Línea Celular Tumoral
4.
iScience ; 26(3): 106126, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36748086

RESUMEN

Current COVID-19 vaccines have been associated with a decline in infection rates, prevention of severe disease, and a decrease in mortality rates. However, SARS-CoV-2 variants are continuously evolving, and development of new accessible COVID-19 vaccines is essential to mitigate the pandemic. Here, we present data on preclinical studies in mice of a receptor-binding domain (RBD)-based recombinant protein vaccine (PHH-1V) consisting of an RBD fusion heterodimer comprising the B.1.351 and B.1.1.7 SARS-CoV-2 variants formulated in SQBA adjuvant, an oil-in-water emulsion. A prime-boost immunisation with PHH-1V in BALB/c and K18-hACE2 mice induced a CD4+ and CD8+ T cell response and RBD-binding antibodies with neutralizing activity against several variants, and also showed a good tolerability profile. Significantly, RBD fusion heterodimer vaccination conferred 100% efficacy, preventing mortality in SARS-CoV-2 infected K18-hACE2 mice, but also reducing Beta, Delta and Omicron infection in lower respiratory airways. These findings demonstrate the feasibility of this recombinant vaccine strategy.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35954997

RESUMEN

The main aims of this systematic review with meta-analysis and meta-regression were to describe the effect of multidisciplinary neuromuscular and endurance interventions, including plyometric training, mixed strength and conditioning, HIIT basketball programs and repeated sprint training on youth basketball players considering age, competitive level, gender and the type of the intervention performed to explore a predictive model through a meta-regression analysis. A structured search was conducted following PRISMA guidelines and PICOS model in Medline (PubMed), Web of Science (WOS) and Cochrane databases. Groups of experiments were created according to neuromuscular power (vertical; NPV and horizontal; NPH) and endurance (E). Meta-analysis and sub-groups analysis were performed using a random effect model and pooled standardized mean differences (SMD). A random effects meta-regression was performed regressing SMD for the different sub-groups against percentage change for NPV and NPH. There was a significant positive overall effect of the multidisciplinary interventions on NPV, NPH and E. Sub-groups analysis indicate differences in the effects of the interventions on NPV and NPH considering age, gender, competitive level and the type of the intervention used. Considering the current data available, the meta-regression analysis suggests a good predictability of U-16 and plyometric training on jump performance. Besides, male and elite level youth basketball players had a good predictability on multidirectional speed and agility performance.


Asunto(s)
Rendimiento Atlético , Baloncesto , Ejercicio Pliométrico , Adolescente , Humanos , Masculino , Fuerza Muscular , Estado Nutricional
7.
Cereb Cortex ; 33(1): 235-245, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35311898

RESUMEN

Understanding the brain changes occurring during aging can provide new insights for developing treatments that alleviate or reverse cognitive decline. Neurostimulation techniques have emerged as potential treatments for brain disorders and to improve cognitive functions. Nevertheless, given the ethical restrictions of neurostimulation approaches, in silico perturbation protocols based on causal whole-brain models are fundamental to gaining a mechanistic understanding of brain dynamics. Furthermore, this strategy could serve to identify neurophysiological biomarkers differentiating between age groups through an exhaustive exploration of the global effect of all possible local perturbations. Here, we used a resting-state fMRI dataset divided into middle-aged (N =310, <65 years) and older adults (N =310, $\geq $65) to characterize brain states in each group as a probabilistic metastable substate (PMS) space. We showed that the older group exhibited a reduced capability to access a metastable substate that overlaps with the rich club. Then, we fitted the PMS to a whole-brain model and applied in silico stimulations in each node to force transitions from the brain states of the older- to the middle-aged group. We found that the precuneus was the best stimulation target. Overall, these findings could have important implications for designing neurostimulation interventions for reversing the effects of aging on whole-brain dynamics.


Asunto(s)
Envejecimiento , Encéfalo , Persona de Mediana Edad , Humanos , Anciano , Encéfalo/fisiología , Envejecimiento/fisiología , Imagen por Resonancia Magnética , Cognición/fisiología , Lóbulo Parietal , Mapeo Encefálico
8.
Nat Commun ; 12(1): 6946, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836952

RESUMEN

Black women across the African diaspora experience more aggressive breast cancer with higher mortality rates than white women of European ancestry. Although inter-ethnic germline variation is known, differential somatic evolution has not been investigated in detail. Analysis of deep whole genomes of 97 breast cancers, with RNA-seq in a subset, from women in Nigeria in comparison with The Cancer Genome Atlas (n = 76) reveal a higher rate of genomic instability and increased intra-tumoral heterogeneity as well as a unique genomic subtype defined by early clonal GATA3 mutations with a 10.5-year younger age at diagnosis. We also find non-coding mutations in bona fide drivers (ZNF217 and SYPL1) and a previously unreported INDEL signature strongly associated with African ancestry proportion, underscoring the need to expand inclusion of diverse populations in biomedical research. Finally, we demonstrate that characterizing tumors for homologous recombination deficiency has significant clinical relevance in stratifying patients for potentially life-saving therapies.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Evolución Clonal , Disparidades en el Estado de Salud , Adulto , Anciano , Biopsia , Población Negra/etnología , Población Negra/genética , Mama/patología , Neoplasias de la Mama/etnología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Análisis Mutacional de ADN , Femenino , Factor de Transcripción GATA3/genética , Heterogeneidad Genética , Inestabilidad Genómica , Mutación de Línea Germinal , Humanos , Persona de Mediana Edad , Nigeria/epidemiología , Nigeria/etnología , RNA-Seq , Medición de Riesgo , Sinaptofisina/genética , Transactivadores/genética , Microambiente Tumoral/genética , Población Blanca/etnología , Población Blanca/genética , Secuenciación Completa del Genoma
9.
Oncogene ; 40(48): 6614-6626, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34621020

RESUMEN

KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients' samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)-the main effector of muscular atrophy in cachexia-resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mesilato de Imatinib/farmacología , Proteínas Musculares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-kit/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Sulfuros/farmacología , Sulfonamidas/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Quimioterapia Combinada , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Tumores del Estroma Gastrointestinal/metabolismo , Tumores del Estroma Gastrointestinal/patología , Humanos , Ratones , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Gut ; 70(12): 2283-2296, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33514598

RESUMEN

BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Inhibición Psicológica , Obesidad/complicaciones , Adulto , Anciano , Animales , Estudios Transversales , Hígado Graso/microbiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Transcriptoma
11.
Cereb Cortex ; 31(5): 2466-2481, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33350451

RESUMEN

Normal aging causes disruptions in the brain that can lead to cognitive decline. Resting-state functional magnetic resonance imaging studies have found significant age-related alterations in functional connectivity across various networks. Nevertheless, most of the studies have focused mainly on static functional connectivity. Studying the dynamics of resting-state brain activity across the whole-brain functional network can provide a better characterization of age-related changes. Here, we employed two data-driven whole-brain approaches based on the phase synchronization of blood-oxygen-level-dependent signals to analyze resting-state fMRI data from 620 subjects divided into two groups (middle-age group (n = 310); age range, 50-64 years versus older group (n = 310); age range, 65-91 years). Applying the intrinsic-ignition framework to assess the effect of spontaneous local activation events on local-global integration, we found that the older group showed higher intrinsic ignition across the whole-brain functional network, but lower metastability. Using Leading Eigenvector Dynamics Analysis, we found that the older group showed reduced ability to access a metastable substate that closely overlaps with the so-called rich club. These findings suggest that functional whole-brain dynamics are altered in aging, probably due to a deficiency in a metastable substate that is key for efficient global communication in the brain.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Anciano , Anciano de 80 o más Años , Encéfalo/fisiología , Femenino , Neuroimagen Funcional , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología
12.
Oncogene ; 38(37): 6399-6413, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31324888

RESUMEN

Evolved resistance to tyrosine kinase inhibitor (TKI)-targeted therapies remains a major clinical challenge. In epidermal growth factor receptor (EGFR) mutant non-small-cell lung cancer (NSCLC), failure of EGFR TKIs can result from both genetic and epigenetic mechanisms of acquired drug resistance. Widespread reports of histologic and gene expression changes consistent with an epithelial-to-mesenchymal transition (EMT) have been associated with initially surviving drug-tolerant persister cells, which can seed bona fide genetic mechanisms of resistance to EGFR TKIs. While therapeutic approaches targeting fully resistant cells, such as those harboring an EGFRT790M mutation, have been developed, a clinical strategy for preventing the emergence of persister cells remains elusive. Using mesenchymal cell lines derived from biopsies of patients who progressed on EGFR TKI as surrogates for persister populations, we performed whole-genome CRISPR screening and identified fibroblast growth factor receptor 1 (FGFR1) as the top target promoting survival of mesenchymal EGFR mutant cancers. Although numerous previous reports of FGFR signaling contributing to EGFR TKI resistance in vitro exist, the data have not yet been sufficiently compelling to instigate a clinical trial testing this hypothesis, nor has the role of FGFR in promoting the survival of persister cells been elucidated. In this study, we find that combining EGFR and FGFR inhibitors inhibited the survival and expansion of EGFR mutant drug-tolerant cells over long time periods, preventing the development of fully resistant cancers in multiple vitro models and in vivo. These results suggest that dual EGFR and FGFR blockade may be a promising clinical strategy for both preventing and overcoming EMT-associated acquired drug resistance and provide motivation for the clinical study of combined EGFR and FGFR inhibition in EGFR-mutated NSCLCs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Receptores ErbB/fisiología , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Int J Cancer ; 145(12): 3321-3333, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173346

RESUMEN

Somatic mutation signatures may represent footprints of genetic and environmental exposures that cause different cancer. Few studies have comprehensively examined their association with germline variants, and none in an indigenous African population. SomaticSignatures was employed to extract mutation signatures based on whole-genome or whole-exome sequencing data from female patients with breast cancer (TCGA, training set, n = 1,011; Nigerian samples, validation set, n = 170), and to estimate contributions of signatures in each sample. Association between somatic signatures and common single nucleotide polymorphisms (SNPs) or rare deleterious variants were examined using linear regression. Nine stable signatures were inferred, and four signatures (APOBEC C>T, APOBEC C>G, aging and homologous recombination deficiency) were highly similar to known COSMIC signatures and explained the majority (60-85%) of signature contributions. There were significant heritable components associated with APOBEC C>T signature (h2 = 0.575, p = 0.010) and the combined APOBEC signatures (h2 = 0.432, p = 0.042). In TCGA dataset, seven common SNPs within or near GNB5 were significantly associated with an increased proportion (beta = 0.33, 95% CI = 0.21-0.45) of APOBEC signature contribution at genome-wide significance, while rare germline mutations in MTCL1 was also significantly associated with a higher contribution of this signature (p = 6.1 × 10-6 ). This is the first study to identify associations between germline variants and mutational patterns in breast cancer across diverse populations and geography. The findings provide evidence to substantiate causal links between germline genetic risk variants and carcinogenesis.


Asunto(s)
Negro o Afroamericano/genética , Neoplasias de la Mama/genética , Mutación de Línea Germinal/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Anciano , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Humanos , Persona de Mediana Edad , Nigeria , Estados Unidos , Secuenciación del Exoma/métodos
14.
Nature ; 569(7757): 503-508, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068700

RESUMEN

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Asunto(s)
Línea Celular Tumoral , Neoplasias/genética , Neoplasias/patología , Antineoplásicos/farmacología , Biomarcadores de Tumor , Metilación de ADN , Resistencia a Antineoplásicos , Etnicidad/genética , Edición Génica , Histonas/metabolismo , Humanos , MicroARNs/genética , Terapia Molecular Dirigida , Neoplasias/metabolismo , Análisis por Matrices de Proteínas , Empalme del ARN
15.
Nat Med ; 25(5): 850-860, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068703

RESUMEN

Despite considerable efforts to identify cancer metabolic alterations that might unveil druggable vulnerabilities, systematic characterizations of metabolism as it relates to functional genomic features and associated dependencies remain uncommon. To further understand the metabolic diversity of cancer, we profiled 225 metabolites in 928 cell lines from more than 20 cancer types in the Cancer Cell Line Encyclopedia (CCLE) using liquid chromatography-mass spectrometry (LC-MS). This resource enables unbiased association analysis linking the cancer metabolome to genetic alterations, epigenetic features and gene dependencies. Additionally, by screening barcoded cell lines, we demonstrated that aberrant ASNS hypermethylation sensitizes subsets of gastric and hepatic cancers to asparaginase therapy. Finally, our analysis revealed distinct synthesis and secretion patterns of kynurenine, an immune-suppressive metabolite, in model cancer cell lines. Together, these findings and related methodology provide comprehensive resources that will help clarify the landscape of cancer metabolism.


Asunto(s)
Neoplasias/metabolismo , Animales , Asparaginasa/uso terapéutico , Asparagina/metabolismo , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Línea Celular Tumoral , Metilación de ADN , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Quinurenina/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Metaboloma , Ratones , Ratones Desnudos , Neoplasias/genética , Neoplasias/terapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia
17.
Cancer Res ; 76(6): 1591-602, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26825170

RESUMEN

Non-small cell lung cancer patients carrying oncogenic EGFR mutations initially respond to EGFR-targeted therapy, but later elicit minimal response due to dose-limiting toxicities and acquired resistance. EGF816 is a novel, irreversible mutant-selective EGFR inhibitor that specifically targets EGFR-activating mutations arising de novo and upon resistance acquisition, while sparing wild-type (WT) EGFR. EGF816 potently inhibited the most common EGFR mutations L858R, Ex19del, and T790M in vitro, which translated into strong tumor regressions in vivo in several patient-derived xenograft models. Notably, EGF816 also demonstrated antitumor activity in an exon 20 insertion mutant model. At levels above efficacious doses, EGF816 treatment led to minimal inhibition of WT EGFR and was well tolerated. In single-dose studies, EGF816 provided sustained inhibition of EGFR phosphorylation, consistent with its ability for irreversible binding. Furthermore, combined treatment with EGF816 and INC280, a cMET inhibitor, resulted in durable antitumor efficacy in a xenograft model that initially developed resistance to first-generation EGFR inhibitors via cMET activation. Thus, we report the first preclinical characterization of EGF816 and provide the groundwork for its current evaluation in phase I/II clinical trials in patients harboring EGFR mutations, including T790M.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Mutación/efectos de los fármacos , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Fosforilación/efectos de los fármacos , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
18.
PLoS One ; 9(8): e103325, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25083769

RESUMEN

BACKGROUND: Anaplastic lymphoma kinase (ALK) genomic alterations have emerged as a potent predictor of benefit from treatment with ALK inhibitors in several cancers. Currently, there is no information about ALK gene alterations in urothelial carcinoma (UC) and its correlation with clinical or pathologic features and outcome. METHODS: Samples from patients with advanced UC and correlative clinical data were collected. Genomic imbalances were investigated by array comparative genomic hybridization (aCGH). ALK gene status was evaluated by fluorescence in situ hybridization (FISH). ALK expression was assessed by immunohistochemistry (IHC) and high-throughput mutation analysis with Oncomap 3 platform. Next generation sequencing was performed using Illumina Genome Analyzer IIx, and Illumina HiSeq 2000 in the FISH positive case. RESULTS: 70 of 96 patients had tissue available for all the tests performed. Arm level copy number gains at chromosome 2 were identified in 17 (24%) patients. Minor copy number alterations (CNAs) in the proximity of ALK locus were found in 3 patients by aCGH. By FISH analysis, one of these samples had a deletion of the 5'ALK. Whole genome next generation sequencing was inconclusive to confirm the deletion at the level of the ALK gene at the coverage level used. We did not observe an association between ALK CNA and overall survival, ECOG PS, or development of visceral disease. CONCLUSIONS: ALK genomic alterations are rare and probably without prognostic implications in UC. The potential for testing ALK inhibitors in UC merits further investigation but might be restricted to the identification of an enriched population.


Asunto(s)
Carcinoma/genética , Variación Genética , Proteínas Tirosina Quinasas Receptoras/genética , Neoplasias Urológicas/genética , Anciano , Quinasa de Linfoma Anaplásico , Carcinoma/metabolismo , Carcinoma/mortalidad , Carcinoma/patología , Aberraciones Cromosómicas , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Femenino , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Mutación , Estadificación de Neoplasias , Pronóstico , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias Urológicas/metabolismo , Neoplasias Urológicas/mortalidad , Neoplasias Urológicas/patología
19.
Nat Genet ; 45(11): 1386-91, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24076604

RESUMEN

Epigenetic dysregulation is an emerging hallmark of cancers. We developed a high-information-content mass spectrometry approach to profile global histone modifications in human cancers. When applied to 115 lines from the Cancer Cell Line Encyclopedia, this approach identified distinct molecular chromatin signatures. One signature was characterized by increased histone 3 lysine 36 (H3K36) dimethylation, exhibited by several lines harboring translocations in NSD2, which encodes a methyltransferase. A previously unknown NSD2 p.Glu1099Lys (p.E1099K) variant was identified in nontranslocated acute lymphoblastic leukemia (ALL) cell lines sharing this signature. Ectopic expression of the variant induced a chromatin signature characteristic of NSD2 hyperactivation and promoted transformation. NSD2 knockdown selectively inhibited the proliferation of NSD2-mutant lines and impaired the in vivo growth of an NSD2-mutant ALL xenograft. Sequencing analysis of >1,000 pediatric cancer genomes identified the NSD2 p.E1099K alteration in 14% of t(12;21) ETV6-RUNX1-containing ALLs. These findings identify NSD2 as a potential therapeutic target for pediatric ALL and provide a general framework for the functional annotation of cancer epigenomes.


Asunto(s)
Cromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Represoras/genética , Animales , Secuencia de Bases , Línea Celular Tumoral , Niño , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Ratones , Ratones SCID , Células 3T3 NIH , Trasplante de Neoplasias , Análisis de Secuencia de ADN , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Cell ; 154(5): 1151-1161, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993102

RESUMEN

The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene ß-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Neoplasias/tratamiento farmacológico , Antineoplásicos/química , Línea Celular Tumoral , Humanos , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA