Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Mater Today Bio ; 29: 101291, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39435373

RESUMEN

Hybrid 3D constructs combining different structural components afford unique opportunities to engineer functional tissues. Creating functional microvascular networks within these constructs is crucial for promoting integration with host vessels and ensuring successful engraftment. Here, we present a hybrid 3D system in which poly (ethylene oxide terephthalate)/poly (butylene terephthalate) fibrous scaffolds are combined with pectin hydrogels to provide internal topography and guide the formation of microvascular beds. The sequence/method of seeding human endothelial cells (EC) and mesenchymal stromal cells (MSC) into the system had a significant impact on microvessel formation. Optimal results were obtained when EC were directly seeded onto the fibrous scaffold, followed by the addition of hydrogel-embedded MSC. This approach facilitated the development of highly oriented microvascular networks along the fibers. These networks were lumenized, supported by a basement membrane, and stabilized by pericyte-like cells, persisting for at least 28 days in vitro. Furthermore, culture under pro-angiogenic and osteoinductive conditions induced MSC osteogenic differentiation without impairing microvessel formation. Upon subcutaneous implantation in mice, the pre-vascularized constructs were infiltrated by host vessels, and human microvessels were still present after 2 weeks. Overall, the proposed hybrid 3D system, combined with an optimized cell-seeding protocol, offers an effective approach for directing the formation of robust and geometrically oriented microvessels, making it promising for tissue engineering applications.

2.
Acta Biomater ; 181: 98-116, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38697382

RESUMEN

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.


Asunto(s)
Péptidos Antimicrobianos , Bacterias , Materiales Biocompatibles , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Humanos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química
3.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674015

RESUMEN

Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance. Adopting a temporal view, we chart the evolving landscape of EV-mediated interactions within the AML niche, underscoring the transformative potential of these insights for therapeutic intervention. Furthermore, the review discusses the emerging understanding of endothelial cell subsets' impact across BM niches in shaping AML disease progression, adding another layer of complexity to the disease progression and treatment resistance. We highlight the potential of cutting-edge methodologies, such as organ-on-chip (OoC) and single-EV analysis technologies, to provide unprecedented insights into AML-niche interactions in a human setting. Leveraging accumulated insights into AML EV signalling to reconfigure BM niches and pioneer novel approaches to decipher the EV signalling networks that fuel AML within the human context could revolutionise the development of niche-targeted therapy for leukaemia eradication.


Asunto(s)
Progresión de la Enfermedad , Vesículas Extracelulares , Leucemia Mieloide Aguda , Nicho de Células Madre , Humanos , Vesículas Extracelulares/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Microambiente Tumoral , Animales , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Médula Ósea/patología , Médula Ósea/metabolismo , Comunicación Celular , Transducción de Señal , Resistencia a Antineoplásicos
4.
Adv Mater ; 36(2): e2307673, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37961933

RESUMEN

Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.


Asunto(s)
Bioimpresión , Microfluídica , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Cirrosis Hepática , Fibrosis , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos
5.
Acta Biomater ; 173: 351-364, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984630

RESUMEN

Developing biocompatible, non-fouling and biodegradable hydrogels for blood-contacting devices remains a demanding challenge. Such materials should promote natural healing, prevent clotting, and undergo controlled degradation. This study evaluates the biocompatibility and biodegradation of degradable poly(2-hydroxyethyl methacrylate) (d-pHEMA) hydrogels with or without reinforcement with oxidized few-layer graphene (d-pHEMA/M5ox) in a long term implantation in rats, assessing non-desired side-effects (irritation, chronic toxicity, immune response). Subcutaneous implantation over 6 months revealed degradation of both hydrogels, despite slower for d-pHEMA/M5ox, with degradation products found in intracellular vesicles. No inflammation nor infection at implantation areas were observed, and no histopathological findings were detected in parenchymal organs. Immunohistochemistry confirmed d-pHEMA and d-pHEMA/M5ox highly anti-adhesiveness. Gene expression of macrophages markers revealed presence of both M1 and M2 macrophages at all timepoints. M1/M2 profile after 6 months reveals an anti-inflammatory environment, suggesting no chronic inflammation, as also demonstrated by cytokines (IL-α, TNF-α and IL-10) analysis. Overall, modification of pHEMA towards a degradable material was successfully achieved without evoking a loss of its inherent properties, specially its anti-adhesiveness and biocompatibility. Therefore, these hydrogels hold potential as blank-slate for further modifications that promote cellular adhesion/proliferation for tissue engineering applications, namely for designing blood contacting devices with different load bearing requirements. STATEMENT OF SIGNIFICANCE: Biocompatibility, tunable biodegradation kinetics, and suitable immune response with lack of chronic toxicity and irritation, are key features in degradable blood contact devices that demand long-term exposure. We herein evaluate the 6-month in vivo performance of a degradable and hemocompatible anti-adhesive hydrogel based in pHEMA, and its mechanically reinforced formulation with few-layer graphene oxide. This subcutaneous implantation in a rat model, shows gradual degradation with progressive changes in material morphology, and no evidence of local inflammation in surrounding tissue, neither signs of inflammation or adverse reactions in systemic organs, suggesting biocompatibility of degradation products. Such hydrogels exhibit great potential as a blank slate for tissue engineering applications, including for blood contact, where cues for specific cells can be incorporated.


Asunto(s)
Grafito , Ratas , Animales , Grafito/farmacología , Polihidroxietil Metacrilato/química , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos , Inflamación , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química
6.
Carbohydr Polym ; 320: 121226, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659815

RESUMEN

Alginate (ALG) is a widely used biomaterial to create artificial extracellular matrices (ECM) for tissue engineering. Since it does not degrade in the human body, imparting proteolytic sensitivity to ALG hydrogels leverages their properties as ECM-mimics. Herein, we explored the strain-promoted azide-alkyne cycloaddition (SPAAC) as a biocompatible and bio-orthogonal click-chemistry to graft cyclooctyne-modified alginate (ALG-K) with bi-azide-functionalized PVGLIG peptides. These are sensitive to matrix metalloproteinase (MMP) and may act as crosslinkers. The ALG-K-PVGLIG conjugates (50, 125, and 250 µM PVGLIG) were characterized for peptide incorporation, crosslinking ability (double-end grafting), and enzymatic liability. For producing cell-permissive multifunctional 3D matrices for dermal fibroblast culture, oxidized ALG-K was grafted with PVGLIG and with RGD peptides for cell-adhesion. SPAAC reactions were performed immediately before cell-laden hydrogel formation by secondary ionic-crosslinking, considerably reducing the steps and time of preparation. Hydrogels with intermediate PVGLIG concentration (125 µM) presented slightly higher stiffness while promoting extensive cell spreading and higher degree of cell-cell interconnections, likely favored by cell-driven proteolytic remodeling of the network. The hydrogel-embedded cells were able to produce their own pericellular ECM, expressed MMP-2 and 14, and secreted PVGLIG-degrading enzymes. By recapitulating key ECM-like features, these hydrogels provide biologically relevant 3D matrices for soft tissue regeneration.

7.
Molecules ; 28(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37110656

RESUMEN

The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.


Asunto(s)
Fibronectinas , Péptidos , Humanos , Comunicación Celular , Heparina/farmacología , Heparina/química , Proliferación Celular
8.
Acta Biomater ; 164: 253-268, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37121371

RESUMEN

Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.% of oxidized graphene-based materials (GBMs) with different lateral sizes/thicknesses (single-layer graphene oxide and oxidized forms of few-layer graphene materials) was performed to enhance the mechanical properties of hydrogels. An ultimate tensile strength increasing up to 0.2 MPa (293% higher than degradable pHEMA) was obtained using oxidized few-layer graphene with 5 µm lateral size. Moreover, the incorporation of GBMs has demonstrated to simultaneously tune the degradation time, which ranged from 2 to 4 months. Notably, these features were achieved keeping not only the intrinsic properties of inert pHEMA regarding water uptake, wettability and cytocompatibility (short and long term), but also the non-fouling behavior towards human cells, platelets and bacteria. This new pHEMA hydrogel with degradation and biomechanical performance tuned by GBMs, can therefore be envisioned for different applications in tissue engineering, particularly for BCDs where non-fouling character is essential. STATEMENT OF SIGNIFICANCE: Suitable mechanical properties, low molecular weight of the degradation products and hemocompatibility are key features in degradable blood contacting devices (BCDs), and pave the way for significant improvement in the field. In here, a hydrogel with outstanding anti-adhesiveness (pHEMA) provides hemocompatibility, the presence of a degradable crosslinker provides degradability, and incorporation of graphene oxide reestablishes its strength, allowing tuning of both degradation and mechanical properties. Notably, these hydrogels simultaneously provide suitable water uptake, wettability, cytocompatibility (short and long term), no acute inflammatory response, and non-fouling behavior towards endothelial cells, platelets and bacteria. Such results highlight the potential of these hydrogels to be envisioned for applications in tissue engineered BCDs, namely as small diameter vascular grafts.


Asunto(s)
Grafito , Hidrogeles , Humanos , Hidrogeles/farmacología , Polihidroxietil Metacrilato , Grafito/farmacología , Células Endoteliales , Materiales Biocompatibles/farmacología , Agua
9.
Mater Today Bio ; 19: 100604, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36969695

RESUMEN

The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D. Alginate was grafted with hydrophobic cyclooctyne groups (ALG-K), yielding amphiphilic derivatives with self-associative potential and ionic crosslinking ability. This allowed the formation of microstructured ALG-KH hydrogels, triggered by the spontaneous segregation between hydrophobic/hydrophilic regions of the polymer that generated 3D networks with stiffer microdomains within a softer lattice. The azide-reactivity of cyclooctynes also allowed ALG-K functionalization with bioactive peptides via cytocompatible strain-promoted azide-alkyne cycloaddition (SPAAC). Hydrogel-embedded mesenchymal stem cells (MSCs) were able to integrate spatial information and to mechano-sense the 3D topography, which regulated cell shape and stress fiber organization. MSCs clusters initially formed on microstructured regions could then act as seeds for neo-tissue formation, inducing cells to produce their own ECM and self-organize into multicellular structures throughout the hydrogel. By combining 3D topography, click functionalization, and injectability, using a single polymer, ALG-K hydrogels provide a unique cell delivery platform for tissue regeneration.

10.
Sci Transl Med ; 15(687): eabo1930, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921032

RESUMEN

Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking Mgat5, which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. N-acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Animales , Ratones , Autoinmunidad , Manosa , Interleucina-17/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
11.
Front Cell Infect Microbiol ; 12: 920204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873153

RESUMEN

Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Animales , Médula Ósea/parasitología , Modelos Animales de Enfermedad , Humanos , Malaria/tratamiento farmacológico , Malaria Vivax/prevención & control , Ratones , Plasmodium vivax
12.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216431

RESUMEN

Blood-contacting devices are increasingly important for the management of cardiovascular diseases. Poly(ethylene glycol) (PEG) hydrogels represent one of the most explored hydrogels to date. However, they are mechanically weak, which prevents their use in load-bearing biomedical applications (e.g., vascular grafts, cardiac valves). Graphene and its derivatives, which have outstanding mechanical properties, a very high specific surface area, and good compatibility with many polymer matrices, are promising candidates to solve this challenge. In this work, we propose the use of graphene-based materials as nanofillers for mechanical reinforcement of PEG hydrogels, and we obtain composites that are stiffer and stronger than, and as anti-adhesive as, neat PEG hydrogels. Results show that single-layer and few-layer graphene oxide can strengthen PEG hydrogels, increasing their stiffness up to 6-fold and their strength 14-fold upon incorporation of 4% w/v (40 mg/mL) graphene oxide. The composites are cytocompatible and remain anti-adhesive towards endothelial cells, human platelets and Staphylococcus aureus, similar to neat hydrogels. To the best of our knowledge, this is the first work to report such an increase of the tensile properties of PEG hydrogels using graphene-based materials as fillers. This work paves the way for the exploitation of PEG hydrogels as a backbone material for load-bearing applications.


Asunto(s)
Grafito/química , Hidrogeles/química , Polietilenglicoles/química , Adhesivos/química , Materiales Biocompatibles/química , Línea Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Polímeros/química , Ingeniería de Tejidos/métodos
13.
J Control Release ; 341: 414-430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871636

RESUMEN

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.


Asunto(s)
Mucosa Intestinal , Animales , Células CACO-2 , Endotelio , Epitelio , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad
14.
Biomaterials ; 279: 121222, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34736148

RESUMEN

Modular tissue engineering approaches open up exciting perspectives for the biofabrication of vascularized tissues from the bottom-up, using micro-sized units such as spheroids as building blocks. While several techniques for 3D spheroid formation from multiple cell types have been reported, strategies to elicit the extra-spheroid assembly of complex vascularized tissues are still scarce. Here we describe an injectable approach to generate vascularized dermal tissue, as an example application, from spheroids combining fibroblasts and endothelial progenitors (OEC) in a xeno-free (XF) setting. Short-term cultured spheroids (1 day) were selected over mature spheroids (7 days), as they showed significantly higher angiogenic sprouting potential. Embedding spheroids in fibrin was crucial for triggering cell migration into the external milieu, while providing a 3D framework for in-gel extra-spheroid morphogenesis. Migrating fibroblasts proliferated and produced endogenous ECM forming a dense tissue, while OEC self-assembled into stable capillaries with lumen and basal lamina. Massive in vitro interconnection between sprouts from neighbouring spheroids rapidly settled an intricate vascular plexus. Upon injection into the chorioallantoic membrane of chick embryos, fibrin-entrapped pre-vascularized XF spheroids developed into a macrotissue with evident host vessel infiltration. After only 4 days, perfused chimeric capillaries with human cells were present in proximal areas, showing fast and functional inosculation between host and donor vessels. This method for generating dense vascularized tissue from injectable building blocks is clinically relevant and potentially useful for a range of applications.


Asunto(s)
Esferoides Celulares , Ingeniería de Tejidos , Animales , Capilares , Embrión de Pollo , Fibrina , Fibroblastos , Humanos
15.
Biomater Sci ; 9(19): 6510-6527, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34582531

RESUMEN

Healing of intestinal chronic wounds remains a major challenge as current therapies are ineffective in promoting proper regeneration of the damaged intestinal wall. An innovative concept, based on a bioinspired multifunctional alginate-melanin hybrid 3D scaffold, to target both inflammatory and regenerative processes, is proposed herein. Hydrogel-entrapped melanin nanoparticles demonstrated free-radical scavenging activity, supported by the neutralization of free-radicals in solution (90%), and the in vitro capture of reactive oxygen species (ROS) produced by stimulated macrophages in an inflammatory-mimicking environment. Notably, scaffolds could be reused (at least 3 times), while maintaining these properties. The extracellular matrix (ECM)-inspired biomaterial, containing protease-sensitive and integrin-binding domains, exhibited remarkable ability for cell colonisation. Human intestinal fibroblasts and epithelial cells (Caco-2) co-seeded on lyophilized scaffolds were able to invade/colonize the construct and produce endogenous ECM, key for neo-tissue formation and re-epithelialization. Scaffolds presented tuneable mechanical properties and could be used both in hydrated and freeze-dried states, maintaining their performance upon rehydration, which are attractive features for clinical application. Collectively, our results highlight the potential of biofunctionalized alginate-melanin hybrid 3D scaffolds as multi-therapeutic patches for modulating inflammation and tissue regeneration in chronic intestinal wounds, which address a major but still unmet clinical need. The proposed multi-therapeutic strategy may potentially be extended to the treatment of other chronic wounds.


Asunto(s)
Hidrogeles , Andamios del Tejido , Células CACO-2 , Matriz Extracelular , Humanos , Inflamación/tratamiento farmacológico
16.
J Control Release ; 337: 329-342, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34311024

RESUMEN

Lung cancer is still the main cause of cancer-related deaths worldwide. Its treatment generally includes surgical resection, immunotherapy, radiotherapy, and chemo-targeted therapies such as the application of tyrosine kinase inhibitors. Gefitinib (GEF) is one of them, but its poor solubility in gastric fluids weakens its bioavailability and therapeutic activity. In addition, like all other chemotherapy treatments, GEF administration can cause damage to healthy tissues. Therefore, the development of novel GEF delivery systems to increase its bioavailability and distribution in tumor site is highly demanded. Herein, an innovative strategy for GEF delivery, by functionalizing PLGA nanoparticles with p28 (p28-NPs), a cell-penetrating peptide derived from the bacterial protein azurin, was developed. Our data indicated that p28 potentiates the selective interaction of these nanosystems with A549 lung cancer cells (active targeting). Further p28-NPs delivering GEF (p28-NPs-GEF) were able to selectively reduce the metabolic activity of A549 cells, while no impact was observed in non-tumor cells (16HBE14o-). In vivo studies using A549 subcutaneous xenograft showed that p28-NPs-GEF reduced A549 primary tumor burden and lung metastases formation. Overall, the design of a p28-functionalized delivery nanosystem to effectively penetrate the membranes of cancer cells while deliver GEF could provide a new strategy to improve lung cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Gefitinib , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Carga Tumoral
17.
Front Bioeng Biotechnol ; 9: 647031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791288

RESUMEN

The stromal microenvironment of breast tumors, namely the vasculature, has a key role in tumor development and metastatic spread. Tumor angiogenesis is a coordinated process, requiring the cooperation of cancer cells, stromal cells, such as fibroblasts and endothelial cells, secreted factors and the extracellular matrix (ECM). In vitro models capable of capturing such complex environment are still scarce, but are pivotal to improve success rates in drug development and screening. To address this challenge, we developed a hybrid alginate-based 3D system, combining hydrogel-embedded mammary epithelial cells (parenchymal compartment) with a porous scaffold co-seeded with fibroblasts and endothelial cells (vascularized stromal compartment). For the stromal compartment, we used porous alginate scaffolds produced by freeze-drying with particle leaching, a simple, low-cost and non-toxic approach that provided storable ready-to-use scaffolds fitting the wells of standard 96-well plates. Co-seeded endothelial cells and fibroblasts were able to adhere to the surface, spread and organize into tubular-like structures. For the parenchymal compartment, a designed alginate gel precursor solution load with mammary epithelial cells was added to the pores of pre-vascularized scaffolds, forming a hydrogel in situ by ionic crosslinking. The 3D hybrid system supports epithelial morphogenesis in organoids/tumoroids and endothelial tubulogenesis, allowing heterotypic cell-cell and cell-ECM interactions, while presenting excellent experimental tractability for whole-mount confocal microscopy, histology and mild cell recovery for down-stream analysis. It thus provides a unique 3D in vitro platform to dissect epithelial-stromal interactions and tumor angiogenesis, which may assist in the development of selective and more effective anticancer therapies.

18.
Nanomaterials (Basel) ; 11(2)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498669

RESUMEN

Gastric cancer (GC) remains a major cause of death worldwide mainly because of the late detection in advanced stage. Recently, we proposed CD44v6 as a relevant marker for early detection of GC, opening new avenues for GC-targeted theranostics. Here, we designed a modular nanoscale system that selectively targets CD44v6-expressing GC cells by the site-oriented conjugation of a new-engineered CD44v6 half-antibody fragment to maleimide-modified polystyrene nanoparticles (PNPs) via an efficient bioorthogonal thiol-Michael addition click chemistry. PNPs with optimal particle size (200 nm) for crossing a developed biomimetic CD44v6-associated GC stromal model were further modified with a heterobifunctional maleimide crosslinker and click conjugated to the novel CD44v6 half-antibody fragment, obtained by chemical reduction of full antibody, without affecting its bioactivity. Collectively, our results confirmed the specific targeting ability of CD44v6-PNPs to CD44v6-expressing cells (1.65-fold higher than controls), highlighting the potential of CD44v6 half-antibody conjugated nanoparticles as promising and clinically relevant tools for the early diagnosis and therapy of GC. Additionally, the rational design of our nanoscale system may be explored for the development of several other nanotechnology-based disease-targeted approaches.

19.
Biofabrication ; 13(3)2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147579

RESUMEN

Spheroids can be used as building-blocks for bottom-up generation of artificial vascular beds, but current biofabrication strategies are often time-consuming and complex. Also, pre-optimization of single spheroid properties is often neglected. Here, we report a simple setup for rapid biomanufacturing of spheroid-based patch-like vascular beds. Prior to patch assembly, spheroids combining mesenchymal stem/stromal cells (MSCs) and outgrowth endothelial cells (OECs) at different ratios (10:1; 5:1; 1:1; 1:5) were formed in non-adhesive microwells and monitored along 7 d. Optimal OEC retention and organization was observed at 1:1 MSC/OEC ratio. Dynamic remodelling of spheroids led to changes in both cellular and extracellular matrix components (ECMs) over time. Some OEC formed internal clusters, while others organized into a peripheral monolayer, stabilized by ECM and pericyte-like cells, with concomitant increase in surface stiffness. Along spheroid culture, OEC switched from an active to a quiescent state, and their endothelial sprouting potential was significantly abrogated, suggesting that immature spheroids may be more therapeutically relevant. Non-adhesive moulds were subsequently used for triggering rapid, one-step, spheroid formation/fusion into square-shaped patches, with spheroids uniformly interspaced via a thin cell layer. The high surface area, endothelial sprouting potential, and scalability of the developed spheroid-based patches make them stand out as artificial vascular beds for modular engineering of large tissue constructs.


Asunto(s)
Células Madre Mesenquimatosas , Esferoides Celulares , Capilares , Células Endoteliales , Ingeniería de Tejidos
20.
Front Bioeng Biotechnol ; 8: 524018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042961

RESUMEN

The small intestine is the primary site of drug absorption following oral administration, making paramount the proper monitoring of the absorption process. In vitro tools to predict intestinal absorption are particularly important in preclinical drug development since they are less laborious and cost-intensive and raise less ethical considerations compared to in vivo studies. The Caco-2 model is considered the gold standard of in vitro intestinal models regarding the prediction of absorption of orally delivered compounds. However, this model presents several drawbacks, such as the expression of tighter tight junctions, not being suitable to perform permeability of paracellular compounds. Besides, cells are representative of only one intestinal cell type, without considering the role of non-absorptive cells on the absorption pathway of drugs. In the present study, we developed a new three-dimensional (3D) intestinal model that aims to bridge the gap between in vitro tools and animal studies. Our 3D model comprises a collagen layer with human intestinal fibroblasts (HIFs) embedded, mimicking the intestinal lamina propria and providing 3D support for the epithelium, composed of Caco-2 cells and mucus-producing HT29-MTX cells, creating a model that can better resemble, both in terms of composition and regarding the outcomes of drug permeability when testing paracellular compounds, the human small intestine. The optimization of the collagen layer with HIFs was performed, testing different collagen concentrations and HIF seeding densities in order to avoid collagen contraction before day 14, maintaining HIF metabolically active inside the collagen disks during time in culture. HIF morphology and extracellular matrix (ECM) deposition were assessed, confirming that fibroblasts presented a normal and healthy elongated shape and secreted fibronectin and laminin, remodeling the collagen matrix. Regarding the epithelial layer, transepithelial electrical resistance (TEER) values decreased when cells were in the 3D configuration, comparing with the 2D analogs (Caco-2 and coculture of Caco-2+HT29-MTX models), becoming more similar with in vivo values. The permeability assay with fluorescein isothiocyanate (FITC)-Dextran 4 kDa showed that absorption in the 3D models is significantly higher than that in the 2D models, confirming the importance of using a more biorelevant model when testing the paracellular permeability of compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA