RESUMEN
BACKGROUND: Several fusion oncogenes showing a higher incidence in pediatric acute myeloid leukemia (AML) are associated with heterogeneous megakaryoblastic and other myeloid features. Here we addressed how developmental mechanisms influence human leukemogenesis by ETO2::GLIS2, associated with dismal prognosis. METHODS: We created novel ETO2::GLIS2 models of leukemogenesis through lentiviral transduction and CRISPR-Cas9 gene editing of human fetal and post-natal hematopoietic stem/progenitor cells (HSPCs), performed in-depth characterization of ETO2::GLIS2 transformed cells through multiple omics and compared them to patient samples. This led to a preclinical assay using patient-derived-xenograft models to test a combination of two clinically-relevant molecules. RESULTS: We showed that ETO2::GLIS2 expression in primary human fetal CD34+ hematopoietic cells led to more efficient in vivo leukemia development than expression in post-natal cells. Moreover, cord blood-derived leukemogenesis has a major dependency on the presence of human cytokines, including IL3 and SCF. Single cell transcriptomes revealed that this cytokine environment controlled two ETO2::GLIS2-transformed states that were also observed in primary patient cells. Importantly, this cytokine sensitivity may be therapeutically-exploited as combined MEK and BCL2 inhibition showed higher efficiency than individual molecules to reduce leukemia progression in vivo. CONCLUSIONS: Our study uncovers an interplay between the cytokine milieu and transcriptional programs that extends a developmental window of permissiveness to transformation by the ETO2::GLIS2 AML fusion oncogene, controls the intratumoral cellular heterogeneity, and offers a ground-breaking therapeutical opportunity by a targeted combination strategy.
Asunto(s)
Citocinas , Proteínas de Fusión Oncogénica , Transducción de Señal , Humanos , Animales , Citocinas/metabolismo , Ratones , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Regulación Leucémica de la Expresión Génica , Niño , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.
Asunto(s)
Progresión de la Enfermedad , Factor de Crecimiento de Hepatocito , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Microambiente Tumoral , Animales , Factor de Crecimiento de Hepatocito/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Ratones , Ratones Endogámicos C57BL , Línea Celular Tumoral , Inflamación/patología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patologíaRESUMEN
Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.
Asunto(s)
Neoplasias , Recombinasa Rad51 , Animales , Ratones , Envejecimiento/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Daño del ADN , Reparación del ADN , Recombinación Homóloga , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismoRESUMEN
In a steady state, hematopoietic stem cells (HSC) exhibit very low levels of reactive oxygen species (ROS). Upon stress, HSC get activated and enter into proliferation and differentiation process to ensure blood cell regeneration. Once activated, their levels of ROS increase, as messengers to mediate their proliferation and differentiation programs. However, at the end of the stress episode, ROS levels need to return to normal to avoid HSC exhaustion. It was shown that antioxidants can prevent loss of HSC self-renewal potential in several contexts such as aging or after exposure to low doses of irradiation suggesting that antioxidants can be used to maintain HSC functional properties upon culture-induced stress. Indeed, in humans, HSC are increasingly used for cell and gene therapy approaches, requiring them to be cultured for several days. As expected, we show that a short culture period leads to drastic defects in HSC functional properties. Moreover, a switch of HSC transcriptional program from stemness to differentiation was evidenced in cultured HSC. Interestingly, cultured-HSC treated with 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-hydroxy-TEMPO or Tempol) exhibited a higher clonogenic potential in secondary colony forming unit cell (CFU-C) assay and higher reconstitution potential in xenograft model, compared to untreated cultured-HSC. By transcriptomic analyses combined with serial CFU-C assays, we show that Tempol, which mimics superoxide dismutase, protects HSC from culture-induced stress partly through VEGFα signaling. Thus, we demonstrate that adding Tempol leads to the protection of HSC functional properties during ex vivo culture.
Asunto(s)
Antioxidantes , Células Madre Hematopoyéticas , Humanos , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Óxidos N-Cíclicos/farmacología , Células Cultivadas , Proliferación CelularRESUMEN
XLF/Cernunnos is a component of the ligation complex used in classical non-homologous end-joining (cNHEJ), a major DNA double-strand break (DSB) repair pathway. We report neurodevelopmental delays and significant behavioral alterations associated with microcephaly in Xlf-/- mice. This phenotype, reminiscent of clinical and neuropathologic features in humans deficient in cNHEJ, is associated with a low level of apoptosis of neural cells and premature neurogenesis, which consists of an early shift of neural progenitors from proliferative to neurogenic divisions during brain development. We show that premature neurogenesis is related to an increase in chromatid breaks affecting mitotic spindle orientation, highlighting a direct link between asymmetric chromosome segregation and asymmetric neurogenic divisions. This study reveals thus that XLF is required for maintaining symmetric proliferative divisions of neural progenitors during brain development and shows that premature neurogenesis may play a major role in neurodevelopmental pathologies caused by NHEJ deficiency and/or genotoxic stress.
Asunto(s)
Enzimas Reparadoras del ADN , Proteínas de Unión al ADN , Humanos , Animales , Ratones , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Reparación del ADN , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Encéfalo/metabolismoRESUMEN
Current murine models of myeloproliferative neoplasms (MPNs) cannot examine how MPNs progress from a single bone marrow source to the entire hematopoietic system. Thus, using transplantation of knock-in JAK2V617F hematopoietic cells into a single irradiated leg, we show development of polycythemia vera (PV) from a single anatomic site in immunocompetent mice. Barcode experiments reveal that grafted JAK2V617F stem/progenitor cells migrate from the irradiated leg to nonirradiated organs such as the contralateral leg and spleen, which is strictly required for development of PV. Mutant cells colonizing the nonirradiated leg efficiently induce PV in nonconditioned recipient mice and contain JAK2V617F hematopoietic stem/progenitor cells that express high levels of carbonic anhydrase 1 (CA1), a peculiar feature also found in CD34+ cells from patients with PV. Finally, genetic and pharmacologic inhibition of CA1 efficiently suppresses PV development and progression in mice and decreases PV patients' erythroid progenitors, strengthening CA1 as a potent therapeutic target for PV. SIGNIFICANCE: Follow-up of hematopoietic malignancies from their initiating anatomic site is crucial for understanding their development and discovering new therapeutic avenues. We developed such an approach, used it to characterize PV progression, and identified CA1 as a promising therapeutic target of PV. This article is highlighted in the In This Issue feature, p. 265.
Asunto(s)
Anhidrasas Carbónicas , Neoplasias Hematológicas , Policitemia Vera , Animales , Neoplasias Hematológicas/patología , Células Madre Hematopoyéticas , Janus Quinasa 2/genética , Ratones , Policitemia Vera/tratamiento farmacológicoRESUMEN
In adult testis, the cell mobility is essential for spermatogonia differentiation and is suspected to regulate spermatogonial stem cell fate. Netrin-1 controls cell migration and/or survival according to the cellular context. Its involvement in some self-renewing lineages raises the possibility that Netrin-1 could have a role in spermatogenesis. We show that in addition to Sertoli cells, a fraction of murine undifferentiated spermatogonia express the Netrin-1 receptor UNC5c and that UNC5c contributes to spermatogonia differentiation. Receptor loss in Unc5crcm males leads to the concomitant accumulation of transit-amplifying progenitors and short syncytia of spermatogonia. Without altering cell death rates, the consequences of Unc5c loss worsen with age: the increase in quiescent undifferentiated progenitors associated with a higher spermatogonial stem cell enriched subset leads to the spermatocyte I decline. We demonstrate in vitro that Netrin-1 promotes a guidance effect as it repulses both undifferentiated and differentiating spermatogonia. Finally, we propose that UNC5c triggers undifferentiated spermatogonia adhesion/ migration and that the repulsive activity of Netrin-1 receptors could regulate spermatogonia differentiation, and maintain germ cell homeostasis.
Asunto(s)
Espermatogénesis , Espermatogonias , Animales , Diferenciación Celular/fisiología , Homeostasis , Masculino , Ratones , Receptores de Netrina/metabolismo , Netrina-1/metabolismo , Espermatogénesis/fisiología , TestículoRESUMEN
Bone marrow (BM) resident macrophages interact with a population of long-term hematopoietic stem cells (LT-HSCs) but their role on LT-HSC properties after stress is not well defined. Here, we show that a 2 Gy-total body irradiation (TBI)-mediated death of LT-HSCs is associated with increased percentages of LT-HSCs with reactive oxygen species (ROS) and of BM resident macrophages producing nitric oxide (NO), resulting in an increased percentage of LT-HSCs with endogenous cytotoxic peroxynitrites. Pharmacological or genetic depletion of BM resident macrophages impairs the radio-induced increases in the percentage of both ROS+ LT-HSCs and peroxynitrite+ LT-HSCs and results in a complete recovery of a functional pool of LT-HSCs. Finally, we show that after a 2 Gy-TBI, a specific decrease of NO production by BM resident macrophages improves the LT-HSC recovery, whereas an exogenous NO delivery decreases the LT-HSC compartment. Altogether, these results show that BM resident macrophages are involved in the response of LT-HSCs to a 2 Gy-TBI and suggest that regulation of NO production can be used to modulate some deleterious effects of a TBI on LT-HSCs.
Asunto(s)
Médula Ósea , Irradiación Corporal Total , Células Madre Hematopoyéticas , Macrófagos , Especies Reactivas de Oxígeno , Irradiación Corporal Total/efectos adversosRESUMEN
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Asunto(s)
Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , Línea Celular , Línea Celular Tumoral , Daño del ADN , Humanos , Fosforilación , Unión Proteica , ARN Polimerasa II/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/metabolismoRESUMEN
RESEARCH QUESTION: What is the impact of radiation exposure on oocyte quality and female fertility? DESIGN: Prepubertal mice underwent whole-body irradiation with a single dose (0.02, 0.1, 0.5, 2, 8 Gy) of gamma- or X-rays. Oocytes were quantified in irradiated (nâ¯=â¯36) and sham-treated (nâ¯=â¯8) mice. After a single exposure to 2 Gy, formation of DNA double-strand breaks (nâ¯=â¯10), activation of checkpoint kinase (Chk2) (nâ¯=â¯10) and dynamics of follicular growth (nâ¯=â¯18) were analysed. Fertility assessment was performed in adult irradiated mice and controls from the number of pups per mouse (nâ¯=â¯28) and the fetal abortion rate (nâ¯=â¯24). Ploidy of mature oocytes (nâ¯=â¯20) was analysed after CREST immunostaining, and uterine sections were examined. RESULTS: Radiation exposure induced a massive loss of primordial follicles with LD50 below 50 mGy for both gamma and X-rays. Growing follicles survived doses up to 8 Gy. This difference in radiosensitivity was not due to a different amount of radio-induced DNA damage, and Chk2 was activated in all oocytes. Exposure to a 2 Gy dose abolished the long-term fertility of females due to depletion of the ovarian reserve. Detailed analysis indicates that surviving oocytes were able to complete folliculogenesis and could be fertilized. This transient fertility allowed irradiated females to produce a single litter albeit with a high rate of fetal abortion (23%, Pâ¯=â¯0.0096), related to altered ploidy in the surviving oocytes (25.5%, Pâ¯=â¯0.0035). CONCLUSIONS: The effects of radiation on surviving oocyte quality question natural conception as a first-line approach in cancer survivors. Together, the data emphasize the need for fertility preservation before radiation exposure and call for reassessment of the use of cryopreserved oocytes.
Asunto(s)
Preservación de la Fertilidad/métodos , Oocitos/fisiología , Oocitos/efectos de la radiación , Ovario/efectos de la radiación , Insuficiencia Ovárica Primaria/etiología , Aborto Espontáneo , Aneuploidia , Animales , ADN/efectos de la radiación , Daño del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Femenino , Rayos gamma , Ratones , Ratones Endogámicos C57BL , Folículo Ovárico/efectos de la radiación , Reserva Ovárica/efectos de la radiación , Maduración Sexual/efectos de la radiación , Irradiación Corporal Total , Rayos XRESUMEN
Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg-/- embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg-/- PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg-/- embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg-/- PGCs.
Asunto(s)
Anemia de Fanconi , Animales , Movimiento Celular/genética , Anemia de Fanconi/genética , Proteína del Grupo de Complementación G de la Anemia de Fanconi/metabolismo , Células Germinativas/metabolismo , Gónadas/metabolismo , Ratones , Transducción de SeñalRESUMEN
The expression of the human ß-like globin genes follows a well-orchestrated developmental pattern, undergoing two essential switches, the first one during the first weeks of gestation (ε to γ), and the second one during the perinatal period (γ to ß). The γ- to ß-globin gene switching mechanism includes suppression of fetal (γ-globin, HbF) and activation of adult (ß-globin, HbA) globin gene transcription. In hereditary persistence of fetal hemoglobin (HPFH), the γ-globin suppression mechanism is impaired leaving these individuals with unusual elevated levels of fetal hemoglobin (HbF) in adulthood. Recently, the transcription factors KLF1 and BCL11A have been established as master regulators of the γ- to ß-globin switch. Previously, a genomic variant in the KLF1 gene, identified by linkage analysis performed on twenty-seven members of a Maltese family, was found to be associated with HPFH. However, variation in the levels of HbF among family members, and those from other reported families carrying genetic variants in KLF1, suggests additional contributors to globin switching. ASF1B was downregulated in the family members with HPFH. Here, we investigate the role of ASF1B in γ- to ß-globin switching and erythropoiesis in vivo. Mouse-human interspecies ASF1B protein identity is 91.6%. By means of knockdown functional assays in human primary erythroid cultures and analysis of the erythroid lineage in Asf1b knockout mice, we provide evidence that ASF1B is a novel contributor to steady-state erythroid differentiation, and while its loss affects the balance of globin expression, it has no major role in hemoglobin switching.
Asunto(s)
Proteínas de Ciclo Celular/genética , Eritropoyesis/genética , Chaperonas de Histonas/genética , Globinas beta/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Chaperonas de Histonas/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Interferencia de ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , gamma-Globinas/genéticaRESUMEN
Transplantable CD34+ hematopoietic stem/progenitor cells (HSPCs) are currently isolated mainly from peripheral blood after mobilization with granulocyte colony-stimulating factor (G-CSF). These mobilized CD34+ cells have the potential to generate all blood cell types. For autologous transplantation, the minimal number of mobilized CD34+ cells is 2â¯×â¯106 CD34+ cells/kg body weight. However, up to 30% of patients fail to mobilize enough peripheral CD34+ cells after G-CSF treatment. To overcome this limitation, a combination of G-CSF and Plerixafor, a CXCR4 chemokine receptor inhibitor, is proposed to enhance CD34+ cell mobilization in poor mobilizer patients. However, only limited data are available on quantification of the functional quality of such patients' mobilized hematopoietic stem cells. Here, for six poor mobilizer patients, a head-to-head comparison of their CD34+ cells mobilized without versus with Plerixafor was performed to assess their properties with respect to the reconstitution of human hematopoiesis in vivo in immune-deficient mice. Our results indicate that mobilized CD34+ cells recovered after the G-CSFâ¯+â¯Plerixafor mobilization protocol have an enhanced intrinsic hematopoietic reconstitution potential compared with CD34+ cells mobilized with G-CSF alone.
Asunto(s)
Antígenos CD34/sangre , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Movilización de Célula Madre Hematopoyética , Compuestos Heterocíclicos/administración & dosificación , Células Madre de Sangre Periférica/metabolismo , Animales , Bencilaminas , Ciclamas , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Trasplante de Células Madre de Sangre Periférica , Células Madre de Sangre Periférica/patologíaRESUMEN
Recombination is crucial for chromosome pairing and segregation during meiosis. SPATA22, along with its direct binding partner and functional collaborator, MEIOB, is essential for the proper repair of double-strand breaks (DSBs) during meiotic recombination. Here, we describe a novel point-mutated allele (shani) of mouse Spata22 that we isolated in a forward genetic screen. shani mutant mice phenocopy Spata22-null and Meiob-null mice: mutant cells appear to form DSBs and initiate meiotic recombination, but are unable to complete DSB repair, leading to meiotic prophase arrest, apoptosis and sterility. shani mutants show precocious loss of DMC1 foci and improper accumulation of BLM-positive recombination foci, reinforcing the requirement of SPATA22-MEIOB for the proper progression of meiotic recombination events. The shani mutation lies within a Spata22 coding exon and molecular characterization shows that it leads to incorrect splicing of the Spata22 mRNA, ultimately resulting in no detectable SPATA22 protein. We propose that the shani mutation alters an exonic splicing enhancer element (ESE) within the Spata22 transcript. The affected DNA nucleotide is conserved in most tetrapods examined, suggesting that the splicing regulation we describe here may be a conserved feature of Spata22 regulation.
Asunto(s)
Proteínas de Ciclo Celular/genética , Recombinación Homóloga , Meiosis/genética , Mutación , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cruzamiento , Conectoma , Femenino , Gametogénesis/genética , Homocigoto , Masculino , Ratones , Ratones Transgénicos , Linaje , Espermatocitos/citología , Espermatocitos/metabolismoRESUMEN
Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.
Asunto(s)
Macrófagos/inmunología , Macrófagos/metabolismo , Fagocitosis/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Cicatrización de Heridas , Fibroblastos/metabolismo , Fibrosis , Humanos , Proteolisis , Piel/inmunología , Piel/lesiones , Piel/metabolismo , Cicatrización de Heridas/inmunologíaRESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Highly conserved among species and expressed in various types of cells, numerous roles have been attributed to the cellular prion protein (PrPC). In hematopoiesis, PrPC regulates hematopoietic stem cell self-renewal but the mechanisms involved in this regulation are unknown. Here we show that PrPC regulates hematopoietic stem cell number during aging and their determination towards myeloid progenitors. Furthermore, PrPC protects myeloid progenitors against the cytotoxic effects of total body irradiation. This radioprotective effect was associated with increased cellular prion mRNA level and with stimulation of the DNA repair activity of the Apurinic/pyrimidinic endonuclease 1, a key enzyme of the base excision repair pathway. Altogether, these results show a previously unappreciated role of PrPC in adult hematopoiesis, and indicate that PrPC-mediated stimulation of BER activity might protect hematopoietic progenitors from the cytotoxic effects of total body irradiation.
Asunto(s)
Priones , Deficiencia de Proteína , Células Madre Hematopoyéticas , Humanos , Células Progenitoras Mieloides , Proteínas Priónicas/genética , Priones/genéticaRESUMEN
Hematopoietic stem cells are responsible for life-long blood cell production and are highly sensitive to exogenous stresses. The effects of low doses of ionizing radiations on radiosensitive tissues such as the hematopoietic tissue are still unknown despite their increasing use in medical imaging. Here, we study the consequences of low doses of ionizing radiations on differentiation and self-renewal capacities of human primary hematopoietic stem/progenitor cells (HSPC). We found that a single 20 mGy dose impairs the hematopoietic reconstitution potential of human HSPC but not their differentiation properties. In contrast to high irradiation doses, low doses of irradiation do not induce DNA double strand breaks in HSPC but, similar to high doses, induce a rapid and transient increase of reactive oxygen species (ROS) that promotes activation of the p38MAPK pathway. HSPC treatment with ROS scavengers or p38MAPK inhibitor prior exposure to 20 mGy irradiation abolishes the 20 mGy-induced defects indicating that ROS and p38MAPK pathways are transducers of low doses of radiation effects. Taken together, these results show that a 20 mGy dose of ionizing radiation reduces the reconstitution potential of HSPC suggesting an effect on the self-renewal potential of human hematopoietic stem cells and pinpointing ROS or the p38MAPK as therapeutic targets. Inhibition of ROS or the p38MAPK pathway protects human primary HSPC from low-dose irradiation toxicity.