Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38871184

RESUMEN

BACKGROUND: Eosinophils are elusive cells involved in allergic inflammation. Single-cell RNA-sequencing (scRNA-seq) is an emerging approach to deeply characterize cellular properties, heterogeneity, and functionality. OBJECTIVES: We sought to comprehensively characterize the transcriptome and biological functions of human eosinophils at a site of severe allergic inflammation in the esophagus (ie, eosinophilic esophagitis [EoE]). METHODS: We employed a gravity-based scRNA-seq methodology to sequence blood eosinophils from patients with EoE and control individuals compared to a reanalyzed public scRNA-seq dataset of human esophageal eosinophils of EoE patients. We used flow cytometry, immunostaining, and a stimulation assay to verify mRNA findings. RESULTS: In total, scRNA-seq was obtained from 586 eosinophils (188 from blood [n = 6 individuals] and 398 from esophagus [n = 6 individuals]). The esophageal eosinophils were composed of a population of activated eosinophils (enriched in 659 genes compared with peripheral blood-associated eosinophils) and a small population of eosinophils resembling peripheral blood eosinophils (enriched in 62 genes compared with esophageal eosinophils). Esophageal eosinophils expressed genes involved in sensing and responding to diverse stimuli, most notably IFN-γ, IL-10, histamine and leukotrienes, and succinate. Esophageal eosinophils were most distinguished from other esophageal populations by gene expression of the receptors CCR3, HRH4, SUCNR1, and VSTM1; transcription factors CEBPE, OLIG1, and OLIG2; protease PRSS33; and the hallmark eosinophil gene CLC. A web of bidirectional eosinophil interactions with other esophageal populations was derived. Comparing esophageal eosinophils and mast cells revealed that esophageal eosinophils expressed genes involved in DNAX-activation protein-12 (also known as TYROBP) interactions, IgG receptor-triggered events, immunoregulation, and IL-10 signaling. CONCLUSIONS: In EoE, esophageal eosinophils exist as 2 populations, a minority population resembling blood eosinophils and the other population characterized by high de novo transcription of diverse sensing receptors and inflammatory mediators readying them to potentially intersect with diverse cell types.

2.
Front Immunol ; 15: 1341745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765012

RESUMEN

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Asunto(s)
Integrinas , Activación de Linfocitos , Animales , Ratones , Integrinas/metabolismo , Integrinas/genética , Activación de Linfocitos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ratones Noqueados , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/inmunología , Enfermedades Vestibulares/metabolismo , Cara/anomalías , Humanos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Regulación de la Expresión Génica , Anomalías Múltiples , Enfermedades Hematológicas , Proteína de la Leucemia Mieloide-Linfoide
3.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38464095

RESUMEN

Single-cell (sc) RNA, ATAC and Multiome sequencing became powerful tools for uncovering biological and disease mechanisms. Unfortunately, manual analysis of sc data presents multiple challenges due to large data volumes and complexity of configuration parameters. This complexity, as well as not being able to reproduce a computational environment, affects the reproducibility of analysis results. The Scientific Data Analysis Platform (https://SciDAP.com) allows biologists without computational expertise to analyze sequencing-based data using portable and reproducible pipelines written in Common Workflow Language (CWL). Our suite of computational pipelines addresses the most common needs in scRNA-Seq, scATAC-Seq and scMultiome data analysis. When executed on SciDAP, it offers a user-friendly alternative to manual data processing, eliminating the need for coding expertise. In this protocol, we describe the use of SciDAP to analyze scMultiome data. Similar approaches can be used for analysis of scRNA-Seq, scATAC-Seq and scVDJ-Seq datasets.

4.
Front Allergy ; 5: 1323405, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344408

RESUMEN

Introduction: Atopic dermatitis (AD) is an allergic skin disease mediated by skin barrier impairment and IL-13-driven immune response. Activation of the aryl hydrocarbon receptor (AHR) has shown promise in early clinical trials for AD; however, the mechanism by which AHR partially ameliorates AD is not well known. Methods: Gene expression data from human biopsies were analyzed, and compared to gene expression from RNA-sequencing in our in-vitro HaCaT cell model system. Western blot, ELISA qRT-PCR were used to further explore the relationship between AHR and IL-13 signaling in HaCaT cells. Results: The AHR target gene CYP1A1 was decreased in lesional skin compared with healthy control skin (p = 4.30 × 10-9). Single-cell RNA sequencing (scRNAseq) demonstrated increased AHR expression (p < 1.0 × 10-4) and decreased CYP1A1 expression in lesional AD keratinocytes compared with healthy control keratinocytes (p < 0.001). Activation of AHR by AHR agonists in HaCaT cells reversed IL-13-dependent gene expression of several key genes in AD pathogenesis, most notably the eosinophil chemoattractant CCL26 (eotaxin-3). Differentially expressed genes in keratinocytes of patients with AD substantially overlapped with genes regulated by AHR agonists from HaCaT cells by RNAseq, but in reverse direction. Mechanistically, there was evidence for direct transcriptional effects of AHR; AHR binding motifs were identified in the differentially expressed genes from lesional AD keratinocytes compared to control keratinocytes, and AHR activation did not modify IL-13-dependent signal transducer and activator of transcription 6 (STAT6) translocation to the nucleus. Discussion: Together, these data suggest that the AHR pathway is dysregulated in AD and that AHR modulates IL-13 downstream signaling in keratinocytes through genome-wide, transcriptional regulatory effects.

5.
Sci Signal ; 16(802): eadg6360, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699081

RESUMEN

The cytokine thymic stromal lymphopoietin (TSLP) mediates type 2 immune responses, and treatments that interfere with TSLP activity are in clinical use for asthma. Here, we investigated whether TSLP contributes to allergic inflammation by directly stimulating human CD4+ T cells and whether this process is operational in eosinophilic esophagitis (EoE), a disease linked to variants in TSLP. We showed that about 10% of esophageal-derived memory CD4+ T cells from individuals with EoE and less than 3% of cells from control individuals expressed the receptor for TSLP and directly responded to TSLP, as determined by measuring the phosphorylation of STAT5, a transcription factor activated downstream of TSLP stimulation. Accordingly, increased numbers of TSLP-responsive memory CD4+ T cells were present in the circulation of individuals with EoE. TSLP increased the proliferation of CD4+ T cells, enhanced type 2 cytokine production, induced the increased abundance of its own receptor, and modified the expression of 212 genes. The epigenetic response to TSLP was associated with an enrichment in BATF and IRF4 chromatin-binding sites, and these transcription factors were induced by TSLP, providing a feed-forward loop. The numbers of circulating and esophageal CD4+ T cells responsive to TSLP correlated with the numbers of esophageal eosinophils, supporting a potential functional role for TSLP in driving the pathogenesis of EoE and providing the basis for a blood-based diagnostic test based on the extent of TSLP-induced STAT5 phosphorylation in circulating CD4+ T cells. These findings highlight the potential therapeutic value of TSLP inhibitors for the treatment of EoE.


Asunto(s)
Esofagitis Eosinofílica , Linfopoyetina del Estroma Tímico , Humanos , Linfocitos T CD4-Positivos , Citocinas , Factor de Transcripción STAT5/genética , Linfocitos T
6.
Cell Death Dis ; 14(8): 501, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542070

RESUMEN

Gonadal sex determination and differentiation are controlled by somatic support cells of testes (Sertoli cells) and ovaries (granulosa cells). In testes, the epigenetic mechanism that maintains chromatin states responsible for suppressing female sexual differentiation remains unclear. Here, we show that Polycomb repressive complex 1 (PRC1) suppresses a female gene regulatory network in postnatal Sertoli cells. We genetically disrupted PRC1 function in embryonic Sertoli cells after sex determination, and we found that PRC1-depleted postnatal Sertoli cells exhibited defective proliferation and cell death, leading to the degeneration of adult testes. In adult Sertoli cells, PRC1 suppressed specific genes required for granulosa cells, thereby inactivating the female gene regulatory network. Chromatin regions associated with female-specific genes were marked by Polycomb-mediated repressive modifications: PRC1-mediated H2AK119ub and PRC2-mediated H3K27me3. Taken together, this study identifies a critical Polycomb-based mechanism that suppresses ovarian differentiation and maintains Sertoli cell fate in adult testes.


Asunto(s)
Histonas , Complejo Represivo Polycomb 1 , Femenino , Masculino , Humanos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Histonas/genética , Histonas/metabolismo , Testículo/metabolismo , Redes Reguladoras de Genes , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Cromatina , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Diferenciación Celular/genética
7.
BMC Genomics ; 24(1): 253, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170195

RESUMEN

Cis-regulatory elements (CRE) are critical for coordinating gene expression programs that dictate cell-specific differentiation and homeostasis. Recently developed self-transcribing active regulatory region sequencing (STARR-Seq) has allowed for genome-wide annotation of functional CREs. Despite this, STARR-Seq assays are only employed in cell lines, in part, due to difficulties in delivering reporter constructs. Herein, we implemented and validated a STARR-Seq-based screen in human CD4+ T cells using a non-integrating lentiviral transduction system. Lenti-STARR-Seq is the first example of a genome-wide assay of CRE function in human primary cells, identifying thousands of functional enhancers and negative regulatory elements (NREs) in human CD4+ T cells. We find an unexpected difference in nucleosome organization between enhancers and NRE: enhancers are located between nucleosomes, whereas NRE are occupied by nucleosomes in their endogenous locations. We also describe chromatin modification, eRNA production, and transcription factor binding at both enhancers and NREs. Our findings support the idea of silencer repurposing as enhancers in alternate cell types. Collectively, these data suggest that Lenti-STARR-Seq is a successful approach for CRE screening in primary human cell types, and provides an atlas of functional CREs in human CD4+ T cells.


Asunto(s)
Linfocitos T CD4-Positivos , Elementos de Facilitación Genéticos , Nucleosomas , Humanos , Diferenciación Celular , Línea Celular
8.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36945549

RESUMEN

Aging profoundly affects immune-system function, promoting susceptibility to pathogens, cancers and chronic inflammation. We previously identified a population of IL-10-producing, T follicular helper-like cells (" Tfh10 "), linked to suppressed vaccine responses in aged mice. Here, we integrate single-cell ( sc )RNA-seq, scATAC-seq and genome-scale modeling to characterize Tfh10 - and the full CD4 + memory T cell ( CD4 + TM ) compartment - in young and old mice. We identified 13 CD4 + TM populations, which we validated through cross-comparison to prior scRNA-seq studies. We built gene regulatory networks ( GRNs ) that predict transcription-factor control of gene expression in each T-cell population and how these circuits change with age. Through integration with pan-cell aging atlases, we identified intercellular-signaling networks driving age-dependent changes in CD4 + TM. Our atlas of finely resolved CD4 + TM subsets, GRNs and cell-cell communication networks is a comprehensive resource of predicted regulatory mechanisms operative in memory T cells, presenting new opportunities to improve immune responses in the elderly.

9.
PLoS Comput Biol ; 19(1): e1010863, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719906

RESUMEN

Transcription factors read the genome, fundamentally connecting DNA sequence to gene expression across diverse cell types. Determining how, where, and when TFs bind chromatin will advance our understanding of gene regulatory networks and cellular behavior. The 2017 ENCODE-DREAM in vivo Transcription-Factor Binding Site (TFBS) Prediction Challenge highlighted the value of chromatin accessibility data to TFBS prediction, establishing state-of-the-art methods for TFBS prediction from DNase-seq. However, the more recent Assay-for-Transposase-Accessible-Chromatin (ATAC)-seq has surpassed DNase-seq as the most widely-used chromatin accessibility profiling method. Furthermore, ATAC-seq is the only such technique available at single-cell resolution from standard commercial platforms. While ATAC-seq datasets grow exponentially, suboptimal motif scanning is unfortunately the most common method for TFBS prediction from ATAC-seq. To enable community access to state-of-the-art TFBS prediction from ATAC-seq, we (1) curated an extensive benchmark dataset (127 TFs) for ATAC-seq model training and (2) built "maxATAC", a suite of user-friendly, deep neural network models for genome-wide TFBS prediction from ATAC-seq in any cell type. With models available for 127 human TFs, maxATAC is the largest collection of high-performance TFBS prediction models for ATAC-seq. maxATAC performance extends to primary cells and single-cell ATAC-seq, enabling improved TFBS prediction in vivo. We demonstrate maxATAC's capabilities by identifying TFBS associated with allele-dependent chromatin accessibility at atopic dermatitis genetic risk loci.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Red Nerviosa , Humanos , Cromatina/genética , Desoxirribonucleasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
10.
Gut ; 72(5): 834-845, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35918104

RESUMEN

OBJECTIVE: The contribution of vitamin D (VD) deficiency to the pathogenesis of allergic diseases remains elusive. We aimed to define the impact of VD on oesophageal allergic inflammation. DESIGN: We assessed the genomic distribution and function of VD receptor (VDR) and STAT6 using histology, molecular imaging, motif discovery and metagenomic analysis. We examined the role of VD supplementation in oesophageal epithelial cells, in a preclinical model of IL-13-induced oesophageal allergic inflammation and in human subjects with eosinophilic oesophagitis (EoE). RESULTS: VDR response elements were enriched in oesophageal epithelium, suggesting enhanced VDR binding to functional gene enhancer and promoter regions. Metagenomic analysis showed that VD supplementation reversed dysregulation of up to 70% of the transcriptome and epigenetic modifications (H3K27Ac) induced by IL-13 in VD-deficient cells, including genes encoding the transcription factors HIF1A and SMAD3, endopeptidases (SERPINB3) and epithelial-mesenchymal transition mediators (TGFBR1, TIAM1, SRC, ROBO1, CDH1). Molecular imaging and chromatin immunoprecipitation showed VDR and STAT6 colocalisation within the regulatory regions of the affected genes, suggesting that VDR and STAT6 interactome governs epithelial tissue responses to IL-13 signalling. Indeed, VD supplementation reversed IL-13-induced epithelial hyperproliferation, reduced dilated intercellular spaces and barrier permeability, and improved differentiation marker expression (filaggrin, involucrin). In a preclinical model of IL-13-mediated oesophageal allergic inflammation and in human EoE, VD levels inversely associated with severity of oesophageal eosinophilia and epithelial histopathology. CONCLUSIONS: Collectively, these findings identify VD as a natural IL-13 antagonist with capacity to regulate the oesophageal epithelial barrier functions, providing a novel therapeutic entry point for type 2 immunity-related diseases.


Asunto(s)
Esofagitis Eosinofílica , Receptores de Calcitriol , Humanos , Inflamación/metabolismo , Interleucina-13/farmacología , Interleucina-13/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Calcitriol/genética , Receptores Inmunológicos/metabolismo , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo , Vitamina D
11.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168374

RESUMEN

Background: Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results: Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions: TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.

12.
STAR Protoc ; 2(4): 100989, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34927097

RESUMEN

Preparation of single-cell suspension from primary tumor tissue can provide a valuable resource for functional, genetic, proteomic, and tumor microenvironment studies. Here, we describe an effective protocol for mouse pancreatic tumor dissociation with further processing of tumor suspension for single-cell RNA sequencing analysis of cellular populations. We further provide an outline of the bioinformatics processing of the data and clustering of heterogeneous cellular populations comprising pancreatic tumors using Common Workflow Language (CWL) pipelines within user-friendly Scientific Data Analysis Platform (https://SciDAP.com). For complete details on the use and execution of this protocol, please refer to Gabitova-Cornell et al. (2020).


Asunto(s)
Biología Computacional/métodos , Neoplasias Pancreáticas , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Femenino , Masculino , Ratones , Páncreas/citología , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Programas Informáticos
13.
Mucosal Immunol ; 14(6): 1271-1281, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34341502

RESUMEN

Expression of Ikaros family transcription factor IKZF3 (Aiolos) increases during murine eosinophil lineage commitment and maturation. Herein, we investigated Aiolos expression and function in mature human and murine eosinophils. Murine eosinophils deficient in Aiolos demonstrated gene expression changes in pathways associated with granulocyte-mediated immunity, chemotaxis, degranulation, ERK/MAPK signaling, and extracellular matrix organization; these genes had ATAC peaks within 1 kB of the TSS that were enriched for Aiolos-binding motifs. Global Aiolos deficiency reduced eosinophil frequency within peripheral tissues during homeostasis; a chimeric mouse model demonstrated dependence on intrinsic Aiolos expression by eosinophils. Aiolos deficiency reduced eosinophil CCR3 surface expression, intracellular ERK1/2 signaling, and CCL11-induced actin polymerization, emphasizing an impaired functional response. Aiolos-deficient eosinophils had reduced tissue accumulation in chemokine-, antigen-, and IL-13-driven inflammatory experimental models, all of which at least partially depend on CCR3 signaling. Human Aiolos expression was associated with active chromatin marks enriched for IKZF3, PU.1, and GATA-1-binding motifs within eosinophil-specific histone ChIP-seq peaks. Furthermore, treating the EOL-1 human eosinophilic cell line with lenalidomide yielded a dose-dependent decrease in Aiolos. These collective data indicate that eosinophil homing during homeostatic and inflammatory allergic states is Aiolos-dependent, identifying Aiolos as a potential therapeutic target for eosinophilic disease.


Asunto(s)
Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Eosinófilos/inmunología , Eosinófilos/metabolismo , Factor de Transcripción Ikaros/genética , Alérgenos/inmunología , Animales , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Granulocitos/inmunología , Granulocitos/metabolismo , Humanos , Factor de Transcripción Ikaros/metabolismo , Inmunidad Innata , Inmunofenotipificación , Recuento de Leucocitos , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Receptores CCR3/genética , Receptores CCR3/metabolismo , Transducción de Señal
14.
Front Immunol ; 12: 701924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421907

RESUMEN

Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/inmunología , Linfocitos T/inmunología , Timo/inmunología , Animales , Humanos , Inmunidad/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología
15.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34330753

RESUMEN

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Asunto(s)
Cromatina/genética , Eosinófilos/metabolismo , Epigénesis Genética/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Células Mieloides , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética
16.
Epigenomics ; 13(8): 613-630, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33820434

RESUMEN

Background: Overlap of pathways enriched by single nucleotide polymorphisms and DNA-methylation underlying chronic postsurgical pain (CPSP), prompted pilot study of CPSP-associated methylation quantitative trait loci (meQTL). Materials & methods: Children undergoing spine-fusion were recruited prospectively. Logistic-regression for genome- and epigenome-wide CPSP association and DNA-methylation-single nucleotide polymorphism association/mediation analyses to identify meQTLs were followed by functional genomics analyses. Results: CPSP (n = 20/58) and non-CPSP groups differed in pain-measures. Of 2753 meQTLs, DNA-methylation at 127 cytosine-guanine dinucleotides mediated association of 470 meQTLs with CPSP (p < 0.05). At PARK16 locus, CPSP risk meQTLs were associated with decreased DNA-methylation at RAB7L1 and increased DNA-methylation at PM20D1. Corresponding RAB7L1/PM20D1 blood eQTLs (GTEx) and cytosine-guanine dinucleotide-loci enrichment for histone marks, transcription factor binding sites and ATAC-seq peaks suggest altered transcription factor-binding. Conclusion: CPSP-associated meQTLs indicate epigenetic mechanisms mediate genetic risk. Clinical trial registration: NCT01839461, NCT01731873 (ClinicalTrials.gov).


Asunto(s)
Epigénesis Genética , Sitios de Carácter Cuantitativo , Niño , Enfermedad Crónica , Humanos , Dolor Postoperatorio/genética , Complicaciones Posoperatorias
17.
Oncogene ; 40(12): 2182-2199, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627785

RESUMEN

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.


Asunto(s)
Carcinogénesis/genética , Proteína Forkhead Box O1/genética , Factores de Transcripción Forkhead/genética , Factor de Transcripción PAX3/genética , Rabdomiosarcoma/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Desarrollo de Músculos/genética , Proteína MioD/genética , Miogenina/genética , Rabdomiosarcoma/patología
18.
Nat Struct Mol Biol ; 27(10): 967-977, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32895553

RESUMEN

Gene regulation in the germline ensures the production of high-quality gametes, long-term maintenance of the species and speciation. Male germline transcriptomes undergo dynamic changes after the mitosis-to-meiosis transition and have been subject to evolutionary divergence among mammals. However, the mechanisms underlying germline regulatory divergence remain undetermined. Here, we show that endogenous retroviruses (ERVs) influence species-specific germline transcriptomes. After the mitosis-to-meiosis transition in male mice, specific ERVs function as active enhancers to drive germline genes, including a mouse-specific gene set, and bear binding motifs for critical regulators of spermatogenesis, such as A-MYB. This raises the possibility that a genome-wide transposition of ERVs rewired germline gene expression in a species-specific manner. Of note, independently evolved ERVs are associated with the expression of human-specific germline genes, demonstrating the prevalence of ERV-driven mechanisms in mammals. Together, we propose that ERVs fine-tune species-specific transcriptomes in the mammalian germline.


Asunto(s)
Retrovirus Endógenos/genética , Espermatogénesis/genética , Espermatozoides/fisiología , Animales , Cromatina/genética , Cromatina/virología , Elementos de Facilitación Genéticos , Regulación Viral de la Expresión Génica , Humanos , Elementos de Nucleótido Esparcido Largo , Masculino , Mamíferos/genética , Mamíferos/virología , Meiosis , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis , Mutación , Proteínas Proto-Oncogénicas c-myb/genética , Secuencias Repetitivas de Ácidos Nucleicos , Roedores/genética , Roedores/virología , Espermatozoides/virología , Transactivadores/genética , Transcriptoma
19.
Nat Struct Mol Biol ; 27(10): 978-988, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32895557

RESUMEN

Owing to bursts in the expression of thousands of germline-specific genes, the testis has the most diverse and complex transcriptome of all organs. By analyzing the male germline of mice, we demonstrate that the genome-wide reorganization of super-enhancers (SEs) drives bursts in germline gene expression after the mitosis-to-meiosis transition. SE reorganization is regulated by two molecular events: the establishment of meiosis-specific SEs via A-MYB (MYBL1), a key transcription factor for germline genes, and the resolution of SEs in mitotically proliferating cells via SCML2, a germline-specific Polycomb protein required for spermatogenesis-specific gene expression. Before entry into meiosis, meiotic SEs are preprogrammed in mitotic spermatogonia to ensure the unidirectional differentiation of spermatogenesis. We identify key regulatory factors for both mitotic and meiotic enhancers, revealing a molecular logic for the concurrent activation of mitotic enhancers and suppression of meiotic enhancers in the somatic and/or mitotic proliferation phases.


Asunto(s)
Elementos de Facilitación Genéticos , Meiosis/genética , Mitosis/genética , Proteínas del Grupo Polycomb/genética , Proteínas Proto-Oncogénicas c-myb/genética , Espermatogénesis/genética , Transactivadores/genética , Animales , Diferenciación Celular , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Grupo Polycomb/metabolismo , Proteínas Proto-Oncogénicas c-myb/metabolismo , Espermatogonias/citología , Espermatogonias/fisiología , Transactivadores/metabolismo , Cromosoma X/genética
20.
Clin Epigenetics ; 12(1): 10, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924266

RESUMEN

The type 2 lysine methyltransferases KMT2C and KMT2D are large, enzymatically active scaffold proteins that form the core of nuclear regulatory structures known as KMT2C/D COMPASS complexes (complex of proteins associating with Set1). These evolutionarily conserved proteins regulate DNA promoter and enhancer elements, modulating the activity of diverse cell types critical for embryonic morphogenesis, central nervous system development, and post-natal survival. KMT2C/D COMPASS complexes and their binding partners enhance active gene expression of specific loci via the targeted modification of histone-3 tail residues, in general promoting active euchromatic conformations. Over the last 20 years, mutations in five key COMPASS complex genes have been linked to three human congenital syndromes: Kabuki syndrome (type 1 [KMT2D] and 2 [KDM6A]), Rubinstein-Taybi syndrome (type 1 [CBP] and 2 [EP300]), and Kleefstra syndrome type 2 (KMT2C). Here, we review the composition and biochemical function of the KMT2 complexes. The specific cellular and embryonic roles of the KMT2C/D COMPASS complex are highlight with a focus on clinically relevant mechanisms sensitive to haploinsufficiency. The phenotypic similarities and differences between the members of this new family of disorders are outlined and emerging therapeutic strategies are detailed.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Cardiopatías Congénitas/genética , Enfermedades Hematológicas/genética , Discapacidad Intelectual/genética , Proteínas de Neoplasias/genética , Síndrome de Rubinstein-Taybi/genética , Enfermedades Vestibulares/genética , Anomalías Múltiples/diagnóstico , Deleción Cromosómica , Cromosomas Humanos Par 9/genética , Anomalías Craneofaciales/diagnóstico , Proteínas de Unión al ADN/metabolismo , Femenino , Cardiopatías Congénitas/diagnóstico , Enfermedades Hematológicas/diagnóstico , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Proteínas de Neoplasias/metabolismo , Fenotipo , Síndrome de Rubinstein-Taybi/diagnóstico , Enfermedades Vestibulares/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA