Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Clin Transl Med ; 12(1): e692, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090094

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder whose prevalence is rapidly increasing worldwide. The molecular mechanisms underpinning the pathophysiology of sporadic PD remain incompletely understood. Therefore, causative therapies are still elusive. To obtain a more integrative view of disease-mediated alterations, we investigated the molecular landscape of PD in human post-mortem midbrains, a region that is highly affected during the disease process. METHODS: Tissue from 19 PD patients and 12 controls were obtained from the Parkinson's UK Brain Bank and subjected to multi-omic analyses: small and total RNA sequencing was performed on an Illumina's HiSeq4000, while proteomics experiments were performed in a hybrid triple quadrupole-time of flight mass spectrometer (TripleTOF5600+) following quantitative sequential window acquisition of all theoretical mass spectra. Differential expression analyses were performed with customized frameworks based on DESeq2 (for RNA sequencing) and with Perseus v.1.5.6.0 (for proteomics). Custom pipelines in R were used for integrative studies. RESULTS: Our analyses revealed multiple deregulated molecular targets linked to known disease mechanisms in PD as well as to novel processes. We have identified and experimentally validated (quantitative real-time polymerase chain reaction/western blotting) several PD-deregulated molecular candidates, including miR-539-3p, miR-376a-5p, miR-218-5p and miR-369-3p, the valid miRNA-mRNA interacting pairs miR-218-5p/RAB6C and miR-369-3p/GTF2H3, as well as multiple proteins, such as CHI3L1, HSPA1B, FNIP2 and TH. Vertical integration of multi-omic analyses allowed validating disease-mediated alterations across different molecular layers. Next to the identification of individual molecular targets in all explored omics layers, functional annotation of differentially expressed molecules showed an enrichment of pathways related to neuroinflammation, mitochondrial dysfunction and defects in synaptic function. CONCLUSIONS: This comprehensive assessment of PD-affected and control human midbrains revealed multiple molecular targets and networks that are relevant to the disease mechanism of advanced PD. The integrative analyses of multiple omics layers underscore the importance of neuroinflammation, immune response activation, mitochondrial and synaptic dysfunction as putative therapeutic targets for advanced PD.


Asunto(s)
Mesencéfalo/patología , Terapia Molecular Dirigida/métodos , Enfermedad de Parkinson/terapia , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Mesencéfalo/anatomía & histología , Mesencéfalo/efectos de los fármacos , Persona de Mediana Edad , Terapia Molecular Dirigida/estadística & datos numéricos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/mortalidad , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Reino Unido
2.
Cell Death Differ ; 27(10): 2810-2827, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32341448

RESUMEN

Axonal degeneration is a key and early pathological feature in traumatic and neurodegenerative disorders of the CNS. Following a focal lesion to axons, extended axonal disintegration by acute axonal degeneration (AAD) occurs within several hours. During AAD, the accumulation of autophagic proteins including Unc-51 like autophagy activating kinase 1 (ULK1) has been demonstrated, but its role is incompletely understood. Here, we study the effect of ULK1 inhibition in different models of lesion-induced axonal degeneration in vitro and in vivo. Overexpression of a dominant negative of ULK1 (ULK1.DN) in primary rat cortical neurons attenuates axotomy-induced AAD in vitro. Both ULK1.DN and the ULK1 inhibitor SBI-0206965 protect against AAD after rat optic nerve crush in vivo. ULK1.DN additionally attenuates long-term axonal degeneration after rat spinal cord injury in vivo. Mechanistically, ULK1.DN decreases autophagy and leads to an mTOR-mediated increase in translational proteins. Consistently, treatment with SBI-0206965 results in enhanced mTOR activation. ULK1.DN additionally modulates the differential splicing of the degeneration-associated genes Kif1b and Ddit3. These findings uncover ULK1 as an important mediator of axonal degeneration in vitro and in vivo, and elucidate its function in splicing, defining it as a putative therapeutic target.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Axones , Sistema Nervioso Central , Degeneración Nerviosa , Enfermedades Neurodegenerativas , Animales , Homólogo de la Proteína 1 Relacionada con la Autofagia/antagonistas & inhibidores , Homólogo de la Proteína 1 Relacionada con la Autofagia/fisiología , Axones/metabolismo , Axones/patología , Células Cultivadas , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/metabolismo , Femenino , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Cultivo Primario de Células , Ratas
3.
Neuromolecular Med ; 19(2-3): 309-321, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28623611

RESUMEN

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and its causes remain unknown. A major hallmark of the disease is the increasing presence of aggregated alpha-synuclein (aSyn). Furthermore, there is a solid consensus on iron (Fe) accumulation in several regions of PD brains during disease progression. In our study, we focused on the interaction of Fe and aggregating aSyn in vivo in a transgenic mouse model overexpressing human aSyn bearing the A53T mutation (prnp.aSyn.A53T). We utilized a neonatal iron-feeding model to exacerbate the motor phenotype of the transgenic mouse model. Beginning from day 100, mice were treated with deferiprone (DFP), a ferric chelator that is able to cross the blood-brain barrier and is currently used in clinics as treatment for hemosiderosis. Our paradigm resulted in an impairment of the learning abilities in the rotarod task and the novel object recognition test. DFP treatment significantly improved the performance in both tasks. Although this was not accompanied by alterations in aSyn aggregation, our results support DFP as possible therapeutic option in PD.


Asunto(s)
Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Quelantes del Hierro/uso terapéutico , Hierro/toxicidad , Discapacidades para el Aprendizaje/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Piridonas/uso terapéutico , alfa-Sinucleína/genética , Animales , Recuento de Células , Deferiprona , Evaluación Preclínica de Medicamentos , Femenino , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/metabolismo , Humanos , Hierro/metabolismo , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/psicología , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/metabolismo , Reconocimiento en Psicología/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante , alfa-Sinucleína/metabolismo
4.
ACS Chem Neurosci ; 6(10): 1769-79, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26284970

RESUMEN

Manganese (Mn) may foster aggregation of alpha-synuclein (αSyn) contributing to the pathogenesis of PD. Here, we examined the influence of αSyn overexpression on distribution and oxidation states of Mn in frozen-hydrated primary midbrain neurons (PMNs) by synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure spectroscopy (XANES). Overexpression of αSyn increased intracellular Mn levels, whereas levels of Ca, Zn, K, P, and S were significantly decreased. Mn oxidation states were not altered. A strong correlation between Cu-/Mn-levels as well as Fe-/Mn-levels was observed in αSyn-overexpressing cells. Subcellular resolution revealed a punctate or filament-like perinuclear and neuritic distribution of Mn, which resembled the expression of DMT1 and MnSOD. While overexpression of αSyn did not significantly alter the expression patterns of the most-expressed Mn transport proteins (DMT1, VGCC, Fpn1), it attenuated the Mn release from Mn-treated neurons. Thus, these data suggest that αSyn may act as an intracellular Mn store. In total, neurotoxicity in PD could be mediated via regulation of transition metal levels and the metal-binding capacity of αSyn, which could represent a promising therapeutic target for this neurodegenerative disorder.


Asunto(s)
Calcio/metabolismo , Manganeso/metabolismo , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Análisis de Varianza , Animales , Calcio/farmacología , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/metabolismo , Células Cultivadas , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Manganeso/farmacología , Mesencéfalo/citología , Microscopía Confocal , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Estadística como Asunto , Transfección , Espectroscopía de Absorción de Rayos X , Microtomografía por Rayos X , alfa-Sinucleína/genética
5.
Glia ; 62(2): 217-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24311453

RESUMEN

Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons (MN) and their axons, but is also influenced by neighboring cells such as astrocytes and microglial cells. The role of microglia in ALS is complex as it switches from an anti-inflammatory and neuroprotective phenotype in early disease to a proinflammatory and neurotoxic phenotype in later stages. Our previous studies in models of neurodegeneration identified rho kinase (ROCK) as a target, which can be manipulated to beneficially influence disease progression. Here, we examined the neuroprotective potential of the ROCK inhibitor Fasudil to target the central pathogenic features of ALS. Application of Fasudil to kainic acid-lesioned primary MN in vitro resulted in a strong prosurvival effect. In vivo, SOD1(G93A) mice benefited from oral treatment with Fasudil showing prolonged survival and improved motor function. These findings were correlated to an improved survival of motor neurons and a pronounced alteration of astroglial and microglial cell infiltration of the spinal cord under Fasudil treatment. Modeling a proinflammatory microglial phenotype by stimulation with LPS in vitro, Fasudil decreased the release of proinflammatory cytokines and chemokines TNFα, Il6, CCL2, CCL3, and CCL5 while CXCL1 release was only transiently suppressed. In sciatic nerve motor axons, neuromuscular junction remodeling processes were increased. In conclusion, we provide preclinical and neurobiological evidence that inhibition of ROCK by the clinically approved small molecule inhibitor Fasudil may be a novel therapeutic approach in ALS combining both neuroprotection and immunomodulation for the cure of this devastating disease.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Esclerosis Amiotrófica Lateral/enzimología , Microglía/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Axones/efectos de los fármacos , Axones/patología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Médula Espinal/efectos de los fármacos
6.
J Neurochem ; 124(2): 250-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23106162

RESUMEN

Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X-ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ~ 0.1 ppm sensitivity under cryo conditions by using X-ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non-DAergic neurons after treatment with transition metals. Application of Fe(2+) resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X-ray absorption near edge structure analysis. After treatment with Mn(2+) , a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn(3+) treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage-gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis.


Asunto(s)
Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/fisiología , Hierro/metabolismo , Manganeso/metabolismo , Espectrometría por Rayos X/métodos , Animales , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Cultivo Primario de Células
7.
FEBS J ; 278(18): 3472-83, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21790997

RESUMEN

Repressor element-1 silencing transcription factor (REST) is a transcriptional repressor of neuron-specific genes that binds to a conserved DNA element, the neuron restrictive silencer element (NRSE/RE1). Interestingly, increased REST activity is found in several neurological diseases like Huntington's disease and cerebral ischemia. Recently, it was shown that NRSE dsRNA, a double-stranded non-coding RNA can bind to REST during a defined period of neuronal differentiation, and thereby changes REST from a transcriptional repressor to an activator of neuron-specific genes. Here, we analyzed the effects of NRSE dsRNA expression in primary retinal ganglion cells. We found that NRSE dsRNA expression vectors significantly enhance neurite outgrowth even when axonal degeneration is induced by neurotrophin deprivation. Transfection of HEK cells with NRSE dsRNA-expressing vectors altered their morphology leading to the formation of thin processes and induced the expression of neurofilament-68. Surprisingly, control vectors containing REST-binding sites, but not expressing NRSE dsRNA, resulted in the same effects, also in the retinal ganglion cell model. Reporter assays and retention of REST in the cytoplasm with a labeled NRSE/RE1-containing plasmid incapable of entering the nucleus suggest that sequestration of REST in the cytoplasm is the reason for the observed effects. No evidence for a biological function of NRSE dsRNA could be found in these models. We conclude that sequestration of REST leads to enhanced neurite outgrowth in retinal ganglion cells and that an increased activity of REST, as it is found in several neurodegenerative diseases, can be effectively modulated by sequestration of REST with plasmids containing NRSE/RE1 sites.


Asunto(s)
Vectores Genéticos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Proteínas Represoras/metabolismo , Células Ganglionares de la Retina/metabolismo , Elementos Silenciadores Transcripcionales , Animales , Secuencia de Bases , Supervivencia Celular , Células Cultivadas , Secuencia de Consenso , Citoplasma/metabolismo , Replicación del ADN , Genes Reporteros , Terapia Genética , Vectores Genéticos/química , Vectores Genéticos/uso terapéutico , Células HEK293 , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuritas/patología , Enfermedades Neurodegenerativas/terapia , Proteínas de Neurofilamentos/metabolismo , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/uso terapéutico , Ratas , Proteínas Represoras/genética , Células Ganglionares de la Retina/patología
8.
Brain ; 131(Pt 1): 250-63, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18063589

RESUMEN

Functional regeneration in the CNS is limited by lesion-induced neuronal apoptosis and an environment inhibiting axonal elongation. A principal, yet unresolved question is the interaction between these two major factors. We thus evaluated the role of pharmacological inhibition of rho kinase (ROCK), a key mediator of myelin-derived axonal growth inhibition and CNTF, a potent neurotrophic factor for retinal ganglion cells (RGC), in models of retinal ganglion cell apoptosis and neurite outgrowth/regeneration in vitro and in vivo. Here, we show for the first time that the ROCK inhibitor Y-27632 significantly enhanced survival of RGC in vitro and in vivo. In vitro, the co-application of CNTF and Y-27632 potentiated the effect of either substance alone. ROCK inhibition resulted in the activation of the intrinsic MAPK pathway, and the combination of CNTF and Y-27632 resulted in even more pronounced MAPK activation. While CNTF also induced STAT3 phosphorylation, the additional application of ROCK inhibitor surprisingly diminished the effects of CNTF on STAT3 phosphorylation. ROCK activity was also decreased in an additive manner by both substances. In vivo, both CNTF and Y-27632 enhanced regeneration of RGC into the non-permissive optic nerve crush model and additive effects were observed after combination treatment. Further evaluation using specific inhibitors delineate STAT3 as a negative regulator of neurite growth and positive regulator of cell survival, while MAPK and Akt support neurite growth. These results show that next to neurotrophic factors ROCK inhibition by Y-27632 potently supports survival of lesioned adult CNS neurons. Co-administration of CNTF and Y-27632 results in additive effects on neurite outgrowth and regeneration. The interaction of intracellular signalling pathways may, however, attenuate more pronounced synergy and has to be taken into account for future treatment strategies.


Asunto(s)
Factor Neurotrófico Ciliar/farmacología , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Quinasas Asociadas a rho/fisiología , Amidas/farmacología , Animales , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Compresión Nerviosa , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuritas/fisiología , Nervio Óptico/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Piridinas/farmacología , Ratas , Ratas Wistar , Retina/enzimología , Células Ganglionares de la Retina/efectos de los fármacos , Factor de Transcripción STAT3/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA