Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37292977

RESUMEN

Human height can be divided into sitting height and leg length, reflecting growth of different parts of the skeleton whose relative proportions are captured by the ratio of sitting to total height (as sitting height ratio, SHR). Height is a highly heritable trait, and its genetic basis has been well-studied. However, the genetic determinants of skeletal proportion are much less well-characterized. Expanding substantially on past work, we performed a genome-wide association study (GWAS) of SHR in ∼450,000 individuals with European ancestry and ∼100,000 individuals with East Asian ancestry from the UK and China Kadoorie Biobanks. We identified 565 loci independently associated with SHR, including all genomic regions implicated in prior GWAS in these ancestries. While SHR loci largely overlap height-associated loci (P < 0.001), the fine-mapped SHR signals were often distinct from height. We additionally used fine-mapped signals to identify 36 credible sets with heterogeneous effects across ancestries. Lastly, we used SHR, sitting height, and leg length to identify genetic variation acting on specific body regions rather than on overall human height.

2.
Cell Genom ; 3(5): 100299, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37228756

RESUMEN

Alterations in the growth and maturation of chondrocytes can lead to variation in human height, including monogenic disorders of skeletal growth. We aimed to identify genes and pathways relevant to human growth by pairing human height genome-wide association studies (GWASs) with genome-wide knockout (KO) screens of growth-plate chondrocyte proliferation and maturation in vitro. We identified 145 genes that alter chondrocyte proliferation and maturation at early and/or late time points in culture, with 90% of genes validating in secondary screening. These genes are enriched in monogenic growth disorder genes and in KEGG pathways critical for skeletal growth and endochondral ossification. Further, common variants near these genes capture height heritability independent of genes computationally prioritized from GWASs. Our study emphasizes the value of functional studies in biologically relevant tissues as orthogonal datasets to refine likely causal genes from GWASs and implicates new genetic regulators of chondrocyte proliferation and maturation.

3.
Nature ; 610(7933): 704-712, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36224396

RESUMEN

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Asunto(s)
Estatura , Mapeo Cromosómico , Polimorfismo de Nucleótido Simple , Humanos , Estatura/genética , Frecuencia de los Genes/genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Polimorfismo de Nucleótido Simple/genética , Europa (Continente)/etnología , Tamaño de la Muestra , Fenotipo
4.
Hum Mol Genet ; 29(15): 2625-2636, 2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32484228

RESUMEN

The growth hormone and insulin-like growth factor (IGF) system is integral to human growth. Genome-wide association studies (GWAS) have identified variants associated with height and located near the genes in this pathway. However, mechanisms underlying these genetic associations are not understood. To investigate the regulation of the genes in this pathway and mechanisms by which regulation could affect growth, we performed GWAS of measured serum protein levels of IGF-I, IGF binding protein-3 (IGFBP-3), pregnancy-associated plasma protein A (PAPP-A2), IGF-II and IGFBP-5 in 838 children (3-18 years) from the Cincinnati Genomic Control Cohort. We identified variants associated with protein levels near IGFBP3 and IGFBP5 genes, which contain multiple signals of association with height and other skeletal growth phenotypes. Surprisingly, variants that associate with protein levels at these two loci do not colocalize with height associations, confirmed through conditional analysis. Rather, the IGFBP3 signal (associated with total IGFBP-3 and IGF-II levels) colocalizes with an association with sitting height ratio (SHR); the IGFBP5 signal (associated with IGFBP-5 levels) colocalizes with birth weight. Indeed, height-associated single nucleotide polymorphisms near genes encoding other proteins in this pathway are not associated with serum levels, possibly excluding PAPP-A2. Mendelian randomization supports a stronger causal relationship of measured serum levels with SHR (for IGFBP-3) and birth weight (for IGFBP-5) than with height. In conclusion, we begin to characterize the genetic regulation of serum levels of IGF-related proteins in childhood. Furthermore, our data strongly suggest the existence of growth-regulating mechanisms acting through IGF-related genes in ways that are not reflected in measured serum levels of the corresponding proteins.


Asunto(s)
Estatura/genética , Hormona del Crecimiento/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Adolescente , Peso al Nacer/genética , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Análisis de la Aleatorización Mendeliana , Proteína Plasmática A Asociada al Embarazo/genética , Sedestación
5.
Nature ; 582(7811): 234-239, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499652

RESUMEN

On average, Peruvian individuals are among the shortest in the world1. Here we show that Native American ancestry is associated with reduced height in an ethnically diverse group of Peruvian individuals, and identify a population-specific, missense variant in the FBN1 gene (E1297G) that is significantly associated with lower height. Each copy of the minor allele (frequency of 4.7%) reduces height by 2.2 cm (4.4 cm in homozygous individuals). To our knowledge, this is the largest effect size known for a common height-associated variant. FBN1 encodes the extracellular matrix protein fibrillin 1, which is a major structural component of microfibrils. We observed less densely packed fibrillin-1-rich microfibrils with irregular edges in the skin of individuals who were homozygous for G1297 compared with individuals who were homozygous for E1297. Moreover, we show that the E1297G locus is under positive selection in non-African populations, and that the E1297 variant shows subtle evidence of positive selection specifically within the Peruvian population. This variant is also significantly more frequent in coastal Peruvian populations than in populations from the Andes or the Amazon, which suggests that short stature might be the result of adaptation to factors that are associated with the coastal environment in Peru.


Asunto(s)
Estatura/genética , Fibrilina-1/genética , Mutación Missense , Selección Genética , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Herencia , Humanos , Indígenas Sudamericanos/genética , Masculino , Microfibrillas/química , Microfibrillas/genética , Perú
6.
Elife ; 52016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27162171

RESUMEN

Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits.


Asunto(s)
Epigenómica , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Sistema de Conducción Cardíaco/fisiología , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA