Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Theriogenology ; 223: 108-114, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38703550

RESUMEN

Protein glycosylation is a post-translational modification involved in wide range of biological processes. In mammalian spermatozoa this modification has been identified in numerous proteins, and membrane glycoproteins are involved in the fertilization process. The objective of the present study was to identify changes in protein glycosylation after acrosome reaction (AR) induction using the 4-Br-A23187 ionophore. Our results showed that treatment with 10 µM of 4-Br-A23187 for 20 min significantly increased the percentage of live acrosome-reacted spermatozoa compared to the control (69.8 ± 0.8 vs. 6.4 ± 0.5; mean % ± SEM, respectively). Also, we observed an increase in 32 kDa tyrosine-phosphorylated protein (p32) and a decrease in serine/threonine phosphorylation of the protein kinase A substrates (phospho-PKA-substrates) after ionophore treatment. Furthermore, changes in glycosylated proteins following AR induction were analyzed using different HRP-conjugated lectins (GNA, DSA, and SNA), revealing changes in mannose and sialic acid residues. Proteomic analysis of isolated proteins using GNA lectin revealed that 50 proteins exhibited significantly different abundance (q-value < 0.01). Subsequent analysis using Uniprot database identified 39 downregulated and 11 upregulated proteins in the presence of 4-Br-A23187. Notably, six of these proteins were classified as transmembrane proteins, namely LRRC37A/B like protein 1 C-terminal domain-containing protein, Membrane metalloendopeptidase like 1, VWFA domain-containing protein, Syndecan, Membrane spanning 4-domains A14 and Serine protease 54. This study shows a novel protocol to induce acrosome reaction in boar spermatozoa and identifies new transmembrane proteins containing mannose residues. Further work is needed to elucidate the role of these proteins in sperm-oocyte fusion.


Asunto(s)
Reacción Acrosómica , Calcimicina , Espermatozoides , Animales , Masculino , Reacción Acrosómica/efectos de los fármacos , Porcinos , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Calcimicina/farmacología , Glicoproteínas/metabolismo , Glicosilación , Proteoma , Ionóforos de Calcio/farmacología
2.
Vet Res Commun ; 48(2): 1189-1193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37889425

RESUMEN

We aimed to investigate the impact of processing boar spermatozoa with phosphate-buffered saline (PBS) at 4 ˚C on acrosomal integrity and increase in 32 kDa tyrosine-phosphorylated protein (p32). Following cooled PBS washing, we observed a significant increase in p32 levels and in the proportion of dead spermatozoa with compromised acrosomal integrity compared to sperm washing using PBS at room temperature. Interestingly, this increase in p32 was effectively inhibited when cooled PBS was supplemented with 1 mM AEBSF, a serine protease inhibitor. Our findings suggest that the increase of p32 in response to cooled PBS washing in boar spermatozoa is associated with enhanced protease activity in dead spermatozoa.


Asunto(s)
Fosfatos , Espermatozoides , Animales , Masculino , Fosfatos/metabolismo , Fosfatos/farmacología , Semen , Espermatozoides/fisiología , Porcinos , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA