Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Int J Cancer ; 153(9): 1671-1683, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37497753

RESUMEN

Breast cancer is composed of metabolically coupled cellular compartments with upregulation of TP53 Induced Glycolysis and Apoptosis Regulator (TIGAR) in carcinoma cells and loss of caveolin 1 (CAV1) with upregulation of monocarboxylate transporter 4 (MCT4) in fibroblasts. The mechanisms that drive metabolic coupling are poorly characterized. The effects of TIGAR on fibroblast CAV1 and MCT4 expression and breast cancer aggressiveness was studied using coculture and conditioned media systems and in-vivo. Also, the role of cytokines in promoting tumor metabolic coupling via MCT4 on cancer aggressiveness was studied. TIGAR downregulation in breast carcinoma cells reduces tumor growth. TIGAR overexpression in carcinoma cells drives MCT4 expression and NFkB activation in fibroblasts. IL6 and TGFB drive TIGAR upregulation in carcinoma cells, reduce CAV1 and increase MCT4 expression in fibroblasts. Tumor growth is abrogated in the presence of MCT4 knockout fibroblasts and environment. We discovered coregulation of c-MYC and TIGAR in carcinoma cells driven by lactate. Metabolic coupling primes the tumor microenvironment allowing for production, uptake and utilization of lactate. In sum, aggressive breast cancer is dependent on metabolic coupling.


Asunto(s)
Neoplasias de la Mama , Carcinoma , Humanos , Femenino , Neoplasias de la Mama/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Glucólisis , Ácido Láctico/metabolismo , FN-kappa B/metabolismo , Apoptosis , Línea Celular Tumoral , Microambiente Tumoral , Proteína p53 Supresora de Tumor/metabolismo
2.
Nat Commun ; 13(1): 7113, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402789

RESUMEN

NRAS-mutated melanoma lacks a specific line of treatment. Metabolic reprogramming is considered a novel target to control cancer; however, NRAS-oncogene contribution to this cancer hallmark is mostly unknown. Here, we show that NRASQ61-mutated melanomas specific metabolic settings mediate cell sensitivity to sorafenib upon metabolic stress. Mechanistically, these cells are dependent on glucose metabolism, in which glucose deprivation promotes a switch from CRAF to BRAF signaling. This scenario contributes to cell survival and sustains glucose metabolism through BRAF-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2/3 (PFKFB2/PFKFB3). In turn, this favors the allosteric activation of phosphofructokinase-1 (PFK1), generating a feedback loop that couples glycolytic flux and the RAS signaling pathway. An in vivo treatment of NRASQ61 mutant melanomas, including patient-derived xenografts, with 2-deoxy-D-glucose (2-DG) and sorafenib effectively inhibits tumor growth. Thus, we provide evidence for NRAS-oncogene contributions to metabolic rewiring and a proof-of-principle for the treatment of NRASQ61-mutated melanoma combining metabolic stress (glycolysis inhibitors) and previously approved drugs, such as sorafenib.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Sorafenib/farmacología , Línea Celular Tumoral , Mutación , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Glucólisis/genética , Glucosa/metabolismo , Estrés Fisiológico , Fosfofructoquinasa-2/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163828

RESUMEN

Hyperactivation of the KEAP1-NRF2 axis is a common molecular trait in carcinomas from different origin. The transcriptional program induced by NRF2 involves antioxidant and metabolic genes that render cancer cells more capable of dealing with oxidative stress. The TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) is an important regulator of glycolysis and the pentose phosphate pathway that was described as a p53 response gene, yet TIGAR expression is detected in p53-null tumors. In this study we investigated the role of NRF2 in the regulation of TIGAR in human carcinoma cell lines. Exposure of carcinoma cells to electrophilic molecules or overexpression of NRF2 significantly increased expression of TIGAR, in parallel to the known NRF2 target genes NQO1 and G6PD. The same was observed in TP53KO cells, indicating that NRF2-mediated regulation of TIGAR is p53-independent. Accordingly, downregulation of NRF2 decreased the expression of TIGAR in carcinoma cell lines from different origin. As NRF2 is essential in the bone, we used mouse primary osteoblasts to corroborate our findings. The antioxidant response elements for NRF2 binding to the promoter of human and mouse TIGAR were described. This study provides the first evidence that NRF2 controls the expression of TIGAR at the transcriptional level.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/genética , Osteoblastos/citología , Monoéster Fosfórico Hidrolasas/genética , Proteína p53 Supresora de Tumor/genética , Células A549 , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucosafosfato Deshidrogenasa/genética , Células HCT116 , Células HeLa , Humanos , Ratones , NAD(P)H Deshidrogenasa (Quinona)/genética , Neoplasias/metabolismo , Osteoblastos/metabolismo , Cultivo Primario de Células , Regiones Promotoras Genéticas
4.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34299056

RESUMEN

The glycolytic modulator TP53-Inducible Glycolysis and Apoptosis Regulator (TIGAR) is overexpressed in several types of cancer and has a role in metabolic rewiring during tumor development. However, little is known about the role of this enzyme in proliferative tissues under physiological conditions. In the current work, we analysed the role of TIGAR in primary human lymphocytes stimulated with the mitotic agent Concanavalin A (ConA). We found that TIGAR expression was induced in stimulated lymphocytes through the PI3K/AKT pathway, since Akti-1/2 and LY294002 inhibitors prevented the upregulation of TIGAR in response to ConA. In addition, suppression of TIGAR expression by siRNA decreased the levels of the proliferative marker PCNA and increased cellular ROS levels. In this model, TIGAR was found to support the activity of glucose 6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentose phosphate pathway (PPP), since the inhibition of TIGAR reduced G6PDH activity and increased autophagy. In conclusion, we demonstrate here that TIGAR is upregulated in stimulated human lymphocytes through the PI3K/AKT signaling pathway, which contributes to the redirection of the carbon flux to the PPP.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Concanavalina A/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Linfocitos/metabolismo , Mitógenos/farmacología , Fosfatidilinositol 3-Quinasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Apoptosis , Proteínas Reguladoras de la Apoptosis/genética , Autofagia , Glucólisis , Humanos , Linfocitos/efectos de los fármacos , Vía de Pentosa Fosfato , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal
5.
FASEB J ; 34(9): 11816-11837, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32666604

RESUMEN

The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.


Asunto(s)
Biomarcadores/metabolismo , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Terapia Genética/métodos , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Carnitina O-Palmitoiltransferasa/genética , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción , Triglicéridos/metabolismo
6.
Gastroenterology ; 159(1): 273-288, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32169429

RESUMEN

BACKGROUND & AIMS: We investigated mechanisms of hepatic stellate cell (HSC) activation, which contributes to liver fibrogenesis. We aimed to determine whether activated HSCs increase glycolysis, which is regulated by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and whether this pathway might serve as a therapeutic target. METHODS: We performed studies with primary mouse HSCs, human LX2 HSCs, human cirrhotic liver tissues, rats and mice with liver fibrosis (due to bile duct ligation [BDL] or administration of carbon tetrachloride), and CPEB4-knockout mice. Glycolysis was inhibited in cells and mice by administration of a small molecule antagonist of PFKFB3 (3-[3-pyridinyl]-1-[4-pyridinyl]-2-propen-1-one [3PO]). Cells were transfected with small interfering RNAs that knock down PFKFB3 or CPEB4. RESULTS: Up-regulation of PFKFB3 protein and increased glycolysis were early and sustained events during HSC activation and accompanied by increased expression of markers of fibrogenesis; incubation of HSCs with 3PO or knockdown of PFKFB3 reduced their activation and proliferation. Mice with liver fibrosis after BDL had increased hepatic PFKFB3; injection of 3PO immediately after the surgery prevented HSC activation and reduced the severity of liver fibrosis compared with mice given vehicle. Levels of PFKFB3 protein were increased in fibrotic liver tissues from patients compared with non-fibrotic liver. Up-regulation of PFKFB3 in activated HSCs did not occur via increased transcription, but instead via binding of CPEB4 to cytoplasmic polyadenylation elements within the 3'-untranslated regions of PFKFB3 messenger RNA. Knockdown of CPEB4 in LX2 HSCs prevented PFKFB3 overexpression and cell activation. Livers from CPEB4-knockout had decreased PFKFB3 and fibrosis after BDL or administration of carbon tetrachloride compared with wild-type mice. CONCLUSIONS: Fibrotic liver tissues from patients and rodents (mice and rats) have increased levels of PFKFB3 and glycolysis, which are essential for activation of HSCs. Increased expression of PFKFB3 is mediated by binding of CPEB4 to its untranslated messenger RNA. Inhibition or knockdown of CPEB4 or PFKFB3 prevents HSC activation and fibrogenesis in livers of mice.


Asunto(s)
Células Estrelladas Hepáticas/patología , Cirrosis Hepática Experimental/patología , Cirrosis Hepática/patología , Fosfofructoquinasa-2/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Línea Celular , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucólisis , Humanos , Hígado/citología , Hígado/patología , Cirrosis Hepática Experimental/inducido químicamente , Cirrosis Hepática Experimental/genética , Masculino , Ratones , Ratones Noqueados , Fosfofructoquinasa-2/genética , Cultivo Primario de Células , Proteínas de Unión al ARN/genética , Ratas , Regulación hacia Arriba
7.
Sci Rep ; 10(1): 824, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965002

RESUMEN

Protein modifications by phosphorylation or ubiquitylation have been selected throughout evolution as efficient regulatory mechanisms of cellular processes. Cell migration is a complex, highly coordinated process where these mechanisms must participate in an integrated manner to transmit signaling during migration. In this study, we show that the ubiquitin ligase HERC1 regulates the p38 signaling pathway, and that this regulation is mediated by the MAPK kinase MKK3. Moreover, we demonstrate a crosstalk between RAF and MKK3/p38 pathways where RAF acts upstream of MKK3. Mechanistically, HERC1 regulates the protein levels of C-RAF and MKK3. Thus, HERC1 ubiquitylates C-RAF, targeting it for proteasomal degradation, and RAF proteins regulate MKK3 mRNA levels. Accordingly, HERC1 knockdown induces C-RAF stabilization and activation of RAF proteins; in turn, this activation increases MKK3, which phosphorylates and activates p38. The importance of these observations is demonstrated by HERC1 regulation of cell migration through regulation of p38 signaling via a RAF-dependent mechanism. Thus, HERC1 plays an essential role as a regulator of crosstalk between RAF/MKK3/p38 signaling pathways during cell migration.


Asunto(s)
Movimiento Celular/genética , Regulación de la Expresión Génica/genética , MAP Quinasa Quinasa 3/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/fisiología , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Línea Celular , Movimiento Celular/fisiología , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitinación
8.
Mol Oncol ; 14(1): 69-86, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665549

RESUMEN

The p53 tumor suppressor protein is a transcription factor that plays a prominent role in protecting cells from malignant transformation. Protein levels of p53 and its transcriptional activity are tightly regulated by the ubiquitin E3 ligase MDM2, the gene expression of which is transcriptionally regulated by p53 in a negative feedback loop. The p53 protein is transcriptionally active as a tetramer, and this oligomerization state is modulated by a complex formed by NEURL4 and the ubiquitin E3 ligase HERC2. Here, we report that MDM2 forms a complex with oligomeric p53, HERC2, and NEURL4. HERC2 knockdown results in a decline in MDM2 protein levels without affecting its protein stability, as it reduces its mRNA expression by inhibition of its promoter activation. DNA damage induced by bleomycin dissociates MDM2 from the p53/HERC2/NEURL4 complex and increases the phosphorylation and acetylation of oligomeric p53 bound to HERC2 and NEURL4. Moreover, the MDM2 promoter, which contains p53-response elements, competes with HERC2 for binding of oligomeric, phosphorylated and acetylated p53. We integrate these findings in a model showing the pivotal role of HERC2 in p53-MDM2 loop regulation. Altogether, these new insights in p53 pathway regulation are of great interest in cancer and may provide new therapeutic targets.


Asunto(s)
Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Acetilación , Antibióticos Antineoplásicos/farmacología , Antineoplásicos/farmacología , Bleomicina/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Interferente Pequeño , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
9.
Front Oncol ; 9: 718, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31482062
12.
Methods Mol Biol ; 1855: 269-277, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30426423

RESUMEN

Polyacrylamide gel electrophoresis (PAGE) is one of the most powerful tools used for protein analysis. We describe the use of Tris-acetate buffer and 3-15% polyacrylamide gradient gels to simultaneously separate proteins in the mass range of 10-500 kDa. We show that this system is highly sensitive, it has good resolution and high reproducibility, and it can be used for general applications of PAGE such as Coomassie Brilliant Blue staining and immunoblotting. Moreover, we describe how to generate mini Tris-acetate polyacrylamide gels to use them in miniprotein electrophoresis systems. These economical gels are easy to generate and to manipulate and allow a rapid analysis of proteins. All these features make the Tris-acetate-PAGE system a very helpful tool for protein analysis.


Asunto(s)
Acetatos/química , Electroforesis en Gel de Poliacrilamida/métodos , Proteínas/análisis , Trometamina/química , Resinas Acrílicas/química , Animales , Electroforesis en Gel de Poliacrilamida/instrumentación , Diseño de Equipo , Geles/química , Humanos , Peso Molecular , Proteínas/aislamiento & purificación
13.
Front Oncol ; 8: 331, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30234009

RESUMEN

For a long time, pioneers in the field of cancer cell metabolism, such as Otto Warburg, have focused on the idea that tumor cells maintain high glycolytic rates even with adequate oxygen supply, in what is known as aerobic glycolysis or the Warburg effect. Recent studies have reported a more complex situation, where the tumor ecosystem plays a more critical role in cancer progression. Cancer cells display extraordinary plasticity in adapting to changes in their tumor microenvironment, developing strategies to survive and proliferate. The proliferation of cancer cells needs a high rate of energy and metabolic substrates for biosynthesis of biomolecules. These requirements are met by the metabolic reprogramming of cancer cells and others present in the tumor microenvironment, which is essential for tumor survival and spread. Metabolic reprogramming involves a complex interplay between oncogenes, tumor suppressors, growth factors and local factors in the tumor microenvironment. These factors can induce overexpression and increased activity of glycolytic isoenzymes and proteins in stromal and cancer cells which are different from those expressed in normal cells. The fructose-6-phosphate/fructose-1,6-bisphosphate cycle, catalyzed by 6-phosphofructo-1-kinase/fructose 1,6-bisphosphatase (PFK1/FBPase1) isoenzymes, plays a key role in controlling glycolytic rates. PFK1/FBpase1 activities are allosterically regulated by fructose-2,6-bisphosphate, the product of the enzymatic activity of the dual kinase/phosphatase family of enzymes: 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFKFB1-4) and TP53-induced glycolysis and apoptosis regulator (TIGAR), which show increased expression in a significant number of tumor types. In this review, the function of these isoenzymes in the regulation of metabolism, as well as the regulatory factors modulating their expression and activity in the tumor ecosystem are discussed. Targeting these isoenzymes, either directly or by inhibiting their activating factors, could be a promising approach for treating cancers.

14.
Oncotarget ; 9(59): 31531-31548, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30140388

RESUMEN

The RAF/MEK/ERK cascade is a conserved intracellular signaling pathway that controls fundamental cellular processes including growth, proliferation, differentiation, survival and migration. Aberrant regulation of this signaling pathway has long been associated with human cancers. A major point of regulation of this pathway occurs at the level of the serine/threonine protein kinase C-RAF. Here, we show how the E3 ubiquitin ligase HERC1 regulates ERK signaling. HERC1 knockdown induced cellular proliferation, which is associated with an increase in ERK phosphorylation and in C-RAF protein levels. We demonstrate that overexpression of wild-type C-RAF is sufficient to increase ERK phosphorylation. Experiments with pharmacological inhibitors of RAF activity, or with interference RNA, show that the regulation of ERK phosphorylation by HERC1 is RAF-dependent. Immunoprecipitation, pull-down and confocal fluorescence microscopy experiments demonstrate an interaction between HERC1 and C-RAF proteins. Mechanistically, HERC1 controls C-RAF stability by regulating its polyubiquitylation in a lysine 48-linked chain. In vitro ubiquitylation assays indicate that C-RAF is a substrate of the E3 ubiquitin ligase HERC1. Altogether, we show how HERC1 can regulate cell proliferation through the activation of ERK signaling by a mechanism that affects C-RAF's stability.

15.
Expert Opin Ther Targets ; 22(8): 659-674, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29985086

RESUMEN

INTRODUCTION: It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer's Achilles heel. Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed. Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Fosfofructoquinasa-2/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Proliferación Celular/fisiología , Progresión de la Enfermedad , Desarrollo de Medicamentos/métodos , Regulación Neoplásica de la Expresión Génica , Glucólisis/fisiología , Humanos , Neoplasias/genética , Neoplasias/patología , Fosfofructoquinasa-2/genética
16.
Mol Cell Biochem ; 448(1-2): 187-197, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29435871

RESUMEN

Lymphocyte activation is associated with rapid increase of both the glycolytic activator fructose 2,6-bisphosphate (Fru-2,6-P2) and the enzyme responsible for its synthesis, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFKFB3 gene, which encodes for the most abundant PFK-2 isoenzyme in proliferating tissues, has been found overexpressed during cell activation in several models, including immune cells. However, there is limited knowledge on the pathways underlying PFKFB3 regulation in human T-lymphocytes, and the role of this gene in human immune response. The aim of this work is to elucidate the molecular mechanisms of PFKFB3 induction during human T-lymphocyte activation by mitotic agents. The results obtained showed PFKFB3 induction during human T-lymphocyte activation by mitogens such as phytohemagglutinin (PHA). PFKFB3 increase occurred concomitantly with GLUT-1, HK-II, and PCNA upregulation, showing that mitotic agents induce a metabolic reprograming process that is required for T-cell proliferation. PI3K-Akt pathway inhibitors, Akti-1/2 and LY294002, reduced PFKFB3 gene induction by PHA, as well as Fru-2,6-P2 and lactate production. Moreover, both inhibitors blocked activation and proliferation in response to PHA, showing the importance of PI3K/Akt signaling pathway in the antigen response of T-lymphocytes. These results provide a link between metabolism and T-cell antigen receptor signaling in human lymphocyte biology that can help to better understand the importance of modulating both pathways to target complex diseases involving the activation of the immune system.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Activación de Linfocitos , Fosfatidilinositol 3-Quinasas/inmunología , Fosfofructoquinasa-2/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Fitohemaglutininas/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología
17.
Toxicol In Vitro ; 48: 1-10, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29278758

RESUMEN

Leucine (Leu) is an essential branched-chain amino acid, present in dairy products, which has been investigated for its important role in cell signaling. The effects of Leu on several kinds of cells have been studied, altough little is known on its action upon bone cells and cell proliferation. Thus, the aim of this study is to investigate the effects of Leu supplementation on the proliferation of pre-osteoblasts from MC3T3-E1 lineage. MC3T3-E1 cells were kept in Alpha medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimitotic. Cells were treated during 48h by adding 50µM of Leu, which corresponds to a 12.5% increase of the amino acid in the culture medium. The evaluation of viability and proliferation of cultured cells was performed using Trypan Blue dye. In order to identify the mechanisms related to the decreased cellular proliferation, assays were performed to assess cytotoxicity, apotosis, oxidative stress, inflammation, autophagy, senescence and DNA damage. Results showed that Leu supplementation decreased cell proliferation by 40% through mechanisms not related to cell necrosis, apoptosis, oxidative stress, autophagy or inhibition of the mTORC1 pathway. On the other hand, Leu supplementation caused DNA damage. In conclusion, Leu caused a negative impact on bone cell proliferation by inducing cell senescence through DNA damage.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Leucina/farmacología , Células 3T3 , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Ratones , Osteoblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/biosíntesis
18.
Oncotarget ; 8(37): 61824-61836, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28977907

RESUMEN

p53 is a transcription factor that regulates important cellular processes related to tumor suppression, including induction of senescence, apoptosis, and DNA repair as well as the inhibition of angiogenesis and cell migration. Therefore, it is critical to understand the molecular mechanism that regulates it. p53 tetramerization is a key step in its activation process and the regulation of this oligomerization, an important control point. The E3 ubiquitin ligase HERC2 controls the p53 transcriptional activity by regulation of its oligomerization state. HERC2-interacting proteins such as the adaptor-like protein with six neuralized domains NEURL4 are also candidates to regulate p53 activity. Here, we demonstrate the existence of an interaction network between NEURL4, HERC2 and p53 proteins. We report a functional interaction between NEURL4 and p53, involving the C-terminal region of p53 and the neuralized domains 3 and 4 of NEURL4. Through this interaction, NEURL4 regulates the transcriptional activity of p53. Thus, NEURL4 depletion reduced the transcriptional activity whereas NEURL4 overexpression increased it. In both cases, p53 stability was not affected. Although NEURL4 may interact with p53 independently of the E3 ubiquitin ligase HERC2, we observed that both proteins are needed to regulate the transcriptional activity of p53. Clonogenic assays confirmed the functional relevance of this interaction observing a decrease in cell growth by NEURL4 overexpression correlated to the increase of cellular cycle inhibitor p21 by p53 activation. Under these conditions, NEURL4 activated p53 oligomerization. All these findings identify NEURL4 as a novel regulator of the p53's signaling.

19.
FEBS J ; 284(20): 3437-3454, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28834297

RESUMEN

In human cancers, transforming growth factor-ß1 (TGF-ß1) plays a dual role by acting as both a tumor suppressor and a promoter of tumor metastasis. Although TGF-ß1 contributes to the metabolic reprogramming of cancer cells and tumor-associated stromal cells, little is known of the molecular mechanisms connecting this cytokine with enhanced glycolysis. PFKFB3 is a homodymeric bifunctional enzyme, belonging to the family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases, that controls the conversion of fructose-6-phosphate (Fru-6-P) to fructose-2,6-bisphosphate (Fru-2,6-P2 ). This metabolite is important for the dynamic regulation of glycolytic flux by allosterically activating phosphofructokinase-1, a rate-limiting enzyme in glycolysis. The PFKFB3 gene is involved in cell proliferation via its role in carbohydrate metabolism. Here, we studied the mechanisms connecting TGF-ß1, glucose metabolism, and PFKFB3 in glioblastoma cell lines. We demonstrate that TGF-ß1 upregulates PFKFB3 mRNA and protein expression resulting in an increase in fructose 2,6-bisphosphate concentration, glucose uptake, glycolytic flux and lactate production. Moreover, these increases in PFKFB3 mRNA and protein expression and Fru-2,6-P2 concentration were reduced when the Smad3, p38 mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt signaling pathways were inhibited. We demonstrate that inhibition of PFKFB3 activity with 3PO or siRNA-mediated knockdown of PFKFB3 significantly eliminated the capacity of the T98G cells to form colonies by TGF-ß1, one of the hallmarks of transformation. Taken together, these results show that TGF-ß1 induces PFKFB3 expression through activation of the p38 MAPK and PI3K/Akt signaling pathways that complement and converge with early activation of Smad signaling. This suggests that PFKFB3 induction by TGF-ß1 can be one of the main mechanisms mediating the reprogramming of glioma cells.


Asunto(s)
Glioblastoma/metabolismo , Glucólisis/efectos de los fármacos , Fosfofructoquinasa-2/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Smad/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Fructosadifosfatos/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glucosa/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Células Tumorales Cultivadas , Ensayo de Tumor de Célula Madre , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Antioxid Redox Signal ; 27(16): 1332-1346, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28269997

RESUMEN

AIMS: Liver steatosis is associated with mitochondrial dysfunction and elevated reactive oxygen species (ROS) levels together with enhanced sensitivity to ischemia-reperfusion (IR) injury and limited response to preconditioning protocols. Here, we sought to determine whether the downregulation in the steatotic liver of peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), a master regulator of mitochondrial metabolism and ROS that is known to play a role in liver metabolic control, could be responsible for the sensitivity of the steatotic liver to ischemic damage. RESULTS: PGC-1α was induced in normal liver after exposure to an IR protocol, which was concomitant with an increase in the levels of antioxidant proteins. By contrast, its induction was severely blunted in the steatotic liver, resulting in a modest induction of antioxidant proteins. Livers of PGC-1α-/- mice on a chow diet were normal, but they exhibited an enhanced sensitivity to IR injury and also a lack of response to ischemic preconditioning (IPC), a phenotype that recapitulated the features of the steatotic liver in terms of liver damage, although the inflammatory response differed between both models. Utilizing an in vitro model of IPC, we found that PGC-1α expression was downregulated in hepatic cells cultured at 1% O2; whereas it was induced after reoxygenation (3% O2), and it was responsible for the recovery of antioxidant gene expression after the ischemic period. Innovation & Conclusion: PGC-1α plays an important role in the protection against IR injury in the liver, which is likely associated with its capacity to induce antioxidant gene expression. Antioxid. Redox Signal. 27, 1332-1346.


Asunto(s)
Regulación hacia Abajo , Hígado Graso/patología , Hígado/irrigación sanguínea , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Animales , Antioxidantes/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/metabolismo , Técnicas de Inactivación de Genes , Hepatocitos , Precondicionamiento Isquémico , Ratones , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA