Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Clocks Sleep ; 6(1): 129-155, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38534798

RESUMEN

Sleep and circadian rhythm disturbance are predictors of poor physical and mental health, including dementia. Long-term digital technology-enabled monitoring of sleep and circadian rhythms in the community has great potential for early diagnosis, monitoring of disease progression, and assessing the effectiveness of interventions. Before novel digital technology-based monitoring can be implemented at scale, its performance and acceptability need to be evaluated and compared to gold-standard methodology in relevant populations. Here, we describe our protocol for the evaluation of novel sleep and circadian technology which we have applied in cognitively intact older adults and are currently using in people living with dementia (PLWD). In this protocol, we test a range of technologies simultaneously at home (7-14 days) and subsequently in a clinical research facility in which gold standard methodology for assessing sleep and circadian physiology is implemented. We emphasize the importance of assessing both nocturnal and diurnal sleep (naps), valid markers of circadian physiology, and that evaluation of technology is best achieved in protocols in which sleep is mildly disturbed and in populations that are relevant to the intended use-case. We provide details on the design, implementation, challenges, and advantages of this protocol, along with examples of datasets.

2.
Allergy ; 79(1): 26-36, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37469218

RESUMEN

Atopic dermatitis (AD) is a chronic, pruritic and inflammatory, dry skin condition with many known comorbidities. These include airway disease, food allergies, atopic eye disease and autoimmune conditions. Furthermore, there is often significant sleep disturbance as well as increased psychological distress and mental health problems. Severe AD therefore often has a significant impact on the quality of life of both patients and their families. In this review we discuss recent findings on the putative links between AD, its association with itch, sleep disturbance and neuropsychiatric morbidity, including the role of inflammation in these conditions. Itch was thought to predominantly drive sleep disruption in AD. We now understand changes in sleep influence immune cell distribution and the associated inflammatory cytokines, which suggests a bidirectional relationship between AD and sleep. We also increasingly recognize inflammation as a key driver in psychological symptoms and disorders. The link between cutaneous, systemic and possible brain inflammation could at least in part be driven by the sleep deprivation and itch-driven neuronal proliferation seen in AD.


Asunto(s)
Dermatitis Atópica , Trastornos del Sueño-Vigilia , Humanos , Dermatitis Atópica/diagnóstico , Calidad de Vida , Piel , Prurito/complicaciones , Trastornos del Sueño-Vigilia/complicaciones , Inflamación/complicaciones , Sueño
3.
Cells ; 12(18)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37759542

RESUMEN

Brain plasticity is induced by learning during wakefulness and is consolidated during sleep. But the molecular mechanisms involved are poorly understood and their relation to experience-dependent changes in brain activity remains to be clarified. Localised mRNA translation is important for the structural changes at synapses supporting brain plasticity consolidation. The translation mTOR pathway, via phosphorylation of 4E-BPs, is known to be activate during sleep and contributes to brain plasticity, but whether this activation is specific to synapses is not known. We investigated this question using acute exposure of rats to an enriched environment (EE). We measured brain activity with EEGs and 4E-BP phosphorylation at cortical and cerebellar synapses with Western blot analyses. Sleep significantly increased the conversion of 4E-BPs to their hyperphosphorylated forms at synapses, especially after EE exposure. EE exposure increased oscillations in the alpha band during active exploration and in the theta-to-beta (4-30 Hz) range, as well as spindle density, during NREM sleep. Theta activity during exploration and NREM spindle frequency predicted changes in 4E-BP hyperphosphorylation at synapses. Hence, our results suggest a functional link between EEG and molecular markers of plasticity across wakefulness and sleep.


Asunto(s)
Gastrópodos , Vigilia , Animales , Ratas , Encéfalo , Sueño , Factores de Iniciación de Péptidos , Sinapsis
4.
Front Behav Neurosci ; 17: 1096720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091594

RESUMEN

Introduction: Millions of people worldwide take medications such as L-DOPA that increase dopamine to treat Parkinson's disease. Yet, we do not fully understand how L-DOPA affects sleep and memory. Our earlier research in Parkinson's disease revealed that the timing of L-DOPA relative to sleep affects dopamine's impact on long-term memory. Dopamine projections between the midbrain and hippocampus potentially support memory processes during slow wave sleep. In this study, we aimed to test the hypothesis that L-DOPA enhances memory consolidation by modulating NREM sleep. Methods: We conducted a double-blind, randomised, placebo-controlled crossover trial with healthy older adults (65-79 years, n = 35). Participants first learned a word list and were then administered long-acting L-DOPA (or placebo) before a full night of sleep. Before sleeping, a proportion of the words were re-exposed using a recognition test to strengthen memory. L-DOPA was active during sleep and the practice-recognition test, but not during initial learning. Results: The single dose of L-DOPA increased total slow-wave sleep duration by approximately 11% compared to placebo, while also increasing spindle amplitudes around slow oscillation peaks and around 1-4 Hz NREM spectral power. However, behaviourally, L-DOPA worsened memory of words presented only once compared to re-exposed words. The coupling of spindles to slow oscillation peaks correlated with these differential effects on weaker and stronger memories. To gauge whether L-DOPA affects encoding or retrieval of information in addition to consolidation, we conducted a second experiment targeting L-DOPA only to initial encoding or retrieval and found no behavioural effects. Discussion: Our results demonstrate that L-DOPA augments slow wave sleep in elderly, perhaps tuning coordinated network activity and impacting the selection of information for long-term storage. The pharmaceutical modification of slow-wave sleep and long-term memory may have clinical implications. Clinical trial registration: Eudract number: 2015-002027-26; https://doi.org/10.1186/ISRCTN90897064, ISRCTN90897064.

5.
Sleep Med Rev ; 65: 101665, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36208588

RESUMEN

Changes in sleep during mid-to-late life are associated with risk for Alzheimer's disease (AD). Mechanistic understanding of this association necessitates measurement tools able to quantify these sleep changes longitudinally and accurately. We conducted a systematic review with meta-analysis of validity studies of non-invasive sleep-measuring devices published since 2015 that record sleep metrics associated with AD in adults over 40 (mean 52.9, SD 6.1 years). We reviewed 52 studies, including 32 wearable and ten non-wearable single or multi-sensor devices validated against polysomnography (minimum one night). The apnoea hypopnoea index and oxygen desaturation index were accurately measured across devices. Total sleep time and sleep efficiency were significantly overestimated (p < 0.001) by mean 33.2 minutes and 7.6%, respectively. Slow wave sleep duration was inaccurately measured except by a headband device with electroencephalography. There was no significant difference in accuracy between participants with and without sleep disorders. Studies were undermined by high risk of bias from closed-access algorithms and classification thresholds, and incomplete reporting of accuracy data. Only one study investigated slow wave activity, and none investigated sleep spindles. Nonetheless, we have identified devices that could be used in future studies of sleep and AD risk and discuss some of the limitations of available research.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Sueño-Vigilia , Adulto , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico , Humanos , Oxígeno , Polisomnografía , Sueño , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/diagnóstico
6.
Elife ; 112022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36039635

RESUMEN

Background: Young people living with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased risk of schizophrenia, intellectual disability, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In common with these conditions, 22q11.2DS is also associated with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity in 22q11.2DS reflects convergent, early signatures of neural circuit disruption also evident in associated neurodevelopmental conditions. Methods: In a cross-sectional design, we recorded high-density sleep EEG in young people (6-20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying associations between sleep architecture, EEG oscillations (spindles and slow waves) and psychiatric symptoms. We also measured performance on a memory task before and after sleep. Results: 22q11.2DS was associated with significant alterations in sleep architecture, including a greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During sleep, deletion carriers showed broadband increases in EEG power with increased slow-wave and spindle amplitudes, increased spindle frequency and density, and stronger coupling between spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that genotype effects on anxiety, ADHD and ASD were partially mediated by sleep EEG measures. Conclusions: This study provides a detailed description of sleep neurophysiology in 22q11.2DS, highlighting alterations in EEG signatures of sleep which have been previously linked to neurodevelopment, some of which were associated with psychiatric symptoms. Sleep EEG features may therefore reflect delayed or compromised neurodevelopmental processes in 22q11.2DS, which could inform our understanding of the neurobiology of this condition and be biomarkers for neuropsychiatric disorders. Funding: This research was funded by a Lilly Innovation Fellowship Award (UB), the National Institute of Mental Health (NIMH 5UO1MH101724; MvdB), a Wellcome Trust Institutional Strategic Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment 2 (IMAGINE-2) (MR/T033045/1; MvdB, JH and MO); Wellcome Trust Strategic Award 'Defining Endophenotypes From Integrated Neurosciences' Wellcome Trust (100202/Z/12/Z MO, JH). NAD was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (202810/Z/16/Z). CE and HAM were supported by Medical Research Council Doctoral Training Grants (C.B.E. 1644194, H.A.M MR/K501347/1). HMM and UB were employed by Eli Lilly & Co during the study; HMM is currently an employee of Boehringer Ingelheim Pharma GmbH & Co KG. The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, the NIHR or the Department of Health funders.


Asunto(s)
Trastorno del Espectro Autista , Síndrome de DiGeorge , Discapacidad Intelectual , Adolescente , Trastorno del Espectro Autista/genética , Estudios Transversales , Síndrome de DiGeorge/complicaciones , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/psicología , Electroencefalografía , Humanos , Discapacidad Intelectual/genética , NAD , Sueño
7.
Sleep ; 44(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329479

RESUMEN

The rs1344706 polymorphism in ZNF804A is robustly associated with schizophrenia and schizophrenia is, in turn, associated with abnormal non-rapid eye movement (NREM) sleep neurophysiology. To examine whether rs1344706 is associated with intermediate neurophysiological traits in the absence of disease, we assessed the relationship between genotype, sleep neurophysiology, and sleep-dependent memory consolidation in healthy participants. We recruited healthy adult males with no history of psychiatric disorder from the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort. Participants were homozygous for either the schizophrenia-associated 'A' allele (N = 22) or the alternative 'C' allele (N = 18) at rs1344706. Actigraphy, polysomnography (PSG) and a motor sequence task (MST) were used to characterize daily activity patterns, sleep neurophysiology and sleep-dependent memory consolidation. Average MST learning and sleep-dependent performance improvements were similar across genotype groups, albeit more variable in the AA group. During sleep after learning, CC participants showed increased slow-wave (SW) and spindle amplitudes, plus augmented coupling of SW activity across recording electrodes. SW and spindles in those with the AA genotype were insensitive to learning, whilst SW coherence decreased following MST training. Accordingly, NREM neurophysiology robustly predicted the degree of overnight motor memory consolidation in CC carriers, but not in AA carriers. We describe evidence that rs1344706 polymorphism in ZNF804A is associated with changes in the coordinated neural network activity that supports offline information processing during sleep in a healthy population. These findings highlight the utility of sleep neurophysiology in mapping the impacts of schizophrenia-associated common genetic variants on neural circuit oscillations and function.


Asunto(s)
Consolidación de la Memoria , Esquizofrenia , Niño , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Estudios Longitudinales , Masculino , Consolidación de la Memoria/fisiología , Polisomnografía , Esquizofrenia/genética , Sueño/genética , Adulto Joven
9.
NPJ Schizophr ; 5(1): 18, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685816

RESUMEN

The slow waves (SW) of non-rapid eye movement (NREM) sleep reflect neocortical components of network activity during sleep-dependent information processing; their disruption may therefore impair memory consolidation. Here, we quantify sleep-dependent consolidation of motor sequence memory, alongside sleep EEG-derived SW properties and synchronisation, and SW-spindle coupling in 21 patients suffering from schizophrenia and 19 healthy volunteers. Impaired memory consolidation in patients culminated in an overnight improvement in motor sequence task performance of only 1.6%, compared with 15% in controls. During sleep after learning, SW amplitudes and densities were comparable in healthy controls and patients. However, healthy controls showed a significant 45% increase in frontal-to-occipital SW coherence during sleep after motor learning in comparison with a baseline night (baseline: 0.22 ± 0.05, learning: 0.32 ± 0.05); patient EEG failed to show this increase (baseline: 0.22 ± 0.04, learning: 0.19 ± 0.04). The experience-dependent nesting of spindles in SW was similarly disrupted in patients: frontal-to-occipital SW-spindle phase-amplitude coupling (PAC) significantly increased after learning in healthy controls (modulation index baseline: 0.17 ± 0.02, learning: 0.22 ± 0.02) but not in patients (baseline: 0.13 ± 0.02, learning: 0.14 ± 0.02). Partial least-squares regression modelling of coherence and PAC data from all electrode pairs confirmed distributed SW coherence and SW-spindle coordination as superior predictors of overnight memory consolidation in healthy controls but not in patients. Quantifying the full repertoire of NREM EEG oscillations and their long-range covariance therefore presents learning-dependent changes in distributed SW and spindle coordination as fingerprints of impaired cognition in schizophrenia.

10.
Epilepsia ; 60(5): 818-829, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30977115

RESUMEN

OBJECTIVE: The true prevalence of epileptic seizures and epilepsy in 22q11.2 deletion syndrome (22q11.2DS) is unknown, because previous studies have relied on historical medical record review. Associations of epilepsy with other neurodevelopmental manifestations (eg, specific psychiatric diagnoses) remain unexplored. METHODS: The primary caregivers of 108 deletion carriers (mean age 13.6 years) and 60 control siblings (mean age 13.1 years) completed a validated epilepsy screening questionnaire. A subsample (n = 44) underwent a second assessment with interview, prolonged electroencephalography (EEG), and medical record and epileptologist review. Intelligence quotient (IQ), psychopathology, and other neurodevelopmental problems were examined using neurocognitive assessment and questionnaire/interview. RESULTS: Eleven percent (12/108) of deletion carriers had an epilepsy diagnosis (controls 0%, P = 0.004). Fifty-seven of the remaining 96 deletion carriers (59.4%) had seizures or seizurelike symptoms (controls 13.3%, 8/60, P < 0.001). A febrile seizure was reported for 24.1% (26/107) of cases (controls 0%, P < 0.001). One deletion carrier with a clinical history of epilepsy was diagnosed with an additional type of unprovoked seizure during the second assessment. One deletion carrier was newly diagnosed with epilepsy, and two more with possible nonmotor absence seizures. A positive screen on the epilepsy questionnaire was more likely in deletion carriers with lower performance IQ (odds ratio [OR] 0.96, P = 0.018), attention-deficit/hyperactivity disorder (ADHD) (OR 3.28, P = 0.021), autism symptoms (OR 3.86, P = 0.004), and indicative motor coordination disorder (OR 4.56, P = 0.021). SIGNIFICANCE: Even when accounting for deletion carriers diagnosed with epilepsy, reports of seizures and seizurelike symptoms are common. These may be "true" epileptic seizures in some cases, which are not recognized during routine clinical care. Febrile seizures were far more common in deletion carriers compared to known population risk. A propensity for seizures in 22q11.2DS was associated with cognitive impairment, psychopathology, and motor coordination problems. Future research is required to determine whether this reflects common neurobiologic risk pathways or is a consequence of recurrent seizures.


Asunto(s)
Síndrome de DiGeorge/complicaciones , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Adolescente , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Niño , Síndrome de DiGeorge/epidemiología , Epilepsia/epidemiología , Epilepsia/fisiopatología , Femenino , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Masculino , Trastornos de la Destreza Motora/epidemiología , Trastornos de la Destreza Motora/genética , Trastornos del Neurodesarrollo/epidemiología , Prevalencia , Convulsiones/epidemiología , Convulsiones/fisiopatología , Convulsiones Febriles/epidemiología , Convulsiones Febriles/genética , Convulsiones Febriles/fisiopatología , Sensibilidad y Especificidad , Encuestas y Cuestionarios , Reino Unido/epidemiología , Escalas de Wechsler , Adulto Joven
11.
Sleep ; 40(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28364465

RESUMEN

Study Objectives: Schizophrenia patients have correlated deficits in sleep spindle density and sleep-dependent memory consolidation. In addition to spindle density, memory consolidation is thought to rely on the precise temporal coordination of spindles with slow waves (SWs). We investigated whether this coordination is intact in schizophrenia and its relation to motor procedural memory consolidation. Methods: Twenty-one chronic medicated schizophrenia patients and 17 demographically matched healthy controls underwent two nights of polysomnography, with training on the finger tapping motor sequence task (MST) on the second night and testing the following morning. We detected SWs (0.5-4 Hz) and spindles during non-rapid eye movement (NREM) sleep. We measured SW-spindle phase-amplitude coupling and its relation with overnight improvement in MST performance. Results: Patients did not differ from controls in the timing of SW-spindle coupling. In both the groups, spindles peaked during the SW upstate. For patients alone, the later in the SW upstate that spindles peaked and the more reliable this phase relationship, the greater the overnight MST improvement. Regression models that included both spindle density and SW-spindle coordination predicted overnight improvement significantly better than either parameter alone, suggesting that both contribute to memory consolidation. Conclusion: Schizophrenia patients show intact spindle-SW temporal coordination, and these timing relationships, together with spindle density, predict sleep-dependent memory consolidation. These relations were seen only in patients suggesting that their memory is more dependent on optimal spindle-SW timing, possibly due to reduced spindle density. Interventions to improve memory may need to increase spindle density while preserving or enhancing the coordination of NREM oscillations.


Asunto(s)
Consolidación de la Memoria/fisiología , Esquizofrenia/fisiopatología , Sueño/fisiología , Adulto , Femenino , Humanos , Masculino , Polisomnografía
12.
J Physiol ; 594(16): 4615-30, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-25480798

RESUMEN

KEY POINTS: High frequency (100-250 Hz) neuronal oscillations in the hippocampus, known as sharp-wave ripples (SWRs), synchronise the firing behaviour of groups of neurons and play a key role in memory consolidation. Learning and memory are severely compromised in dementias such as Alzheimer's disease; however, the effects of dementia-related pathology on SWRs are unknown. The frequency and temporal structure of SWRs was disrupted in a transgenic mouse model of tauopathy (one of the major hallmarks of several dementias). Excitatory pyramidal neurons were more likely to fire action potentials in a phase-locked manner during SWRs in the mouse model of tauopathy; conversely, inhibitory interneurons were less likely to fire phase-locked spikes during SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may underlie the cognitive impairments in this model of dementia. ABSTRACT: Neurons within the CA1 region of the hippocampus are co-activated during high frequency (100-250 Hz) sharp-wave ripple (SWR) activity in a manner that probably drives synaptic plasticity and promotes memory consolidation. In this study we have used a transgenic mouse model of dementia (rTg4510 mice), which overexpresses a mutant form of tau protein, to examine the effects of tauopathy on hippocampal SWRs and associated neuronal firing. Tetrodes were used to record simultaneous extracellular action potentials and local field potentials from the dorsal CA1 pyramidal cell layer of 7- to 8-month-old wild-type and rTg4510 mice at rest in their home cage. At this age point these mice exhibit neurofibrillary tangles, neurodegeneration and cognitive deficits. Epochs of sleep or quiet restfulness were characterised by minimal locomotor activity and a low theta/delta ratio in the local field potential power spectrum. SWRs detected off-line were significantly lower in amplitude and had an altered temporal structure in rTg4510 mice. Nevertheless, the average frequency profile and duration of the SWRs were relatively unaltered. Putative interneurons displayed significantly less temporal and phase locking to SWRs in rTg4510 mice, whilst putative pyramidal neurons showed increased temporal and phase locking to SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may contribute to impairments in memory consolidation in this model of dementia.


Asunto(s)
Región CA1 Hipocampal/fisiología , Demencia/fisiopatología , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Masculino , Ratones Transgénicos , Células Piramidales/fisiología , Proteínas tau/genética
13.
BMC Med Genet ; 16: 96, 2015 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-26498712

RESUMEN

BACKGROUND: Schizophrenia is a complex, polygenic disorder for which over 100 genetic variants have been identified that correlate with diagnosis. However, the biological mechanisms underpinning the different symptom clusters remain undefined. The rs1344706 single nucleotide polymorphism within ZNF804A was among the first genetic variants found to be associated with schizophrenia. Previously, neuroimaging and cognitive studies have revealed several associations between rs1344706 and brain structure and function. The aim of this study is to use a recall-by-genotype (RBG) design to investigate the biological basis for the association of ZNF804A variants with schizophrenia. A RBG study, implemented in a population cohort, will be used to evaluate the impact of genetic variation at rs1344706 on sleep neurophysiology and procedural memory consolidation in healthy participants. METHODS/DESIGN: Participants will be recruited from the Avon Longitudinal Study of Parents and Children (ALSPAC) on the basis of genotype at rs1344706 (n = 24). Each participant will be asked to take part in two nights of in-depth sleep monitoring (polysomnography) allowing collection of neurophysiological sleep data in a manner not amenable to large-scale study. Sleep questionnaires will be used to assess general sleep quality and subjective sleep experience after each in-house recording. A motor sequencing task (MST) will be performed before and after the second night of polysomnography. In order to gather additional data about habitual sleep behaviour participants will be asked to wear a wrist worn activity monitor (actiwatch) and complete a sleep diary for two weeks. DISCUSSION: This study will explore the biological function of ZNF804A genotype (rs1344706) in healthy volunteers by examining detailed features of sleep architecture and physiology in relation to motor learning. Using a RBG approach will enable us to collect precise and detailed phenotypic data whilst achieving an informative biological gradient. It would not be feasible to collect such data in the large sample sizes that would be required under a random sampling scheme. By dissecting the role of individual variants associated with schizophrenia in this way, we can begin to unravel the complex genetic mechanisms of psychiatric disorders and pave the way for future development of novel therapeutic approaches.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , Consolidación de la Memoria/fisiología , Actividad Motora/fisiología , Polimorfismo de Nucleótido Simple , Sueño/fisiología , Adulto , Encéfalo/fisiología , Voluntarios Sanos/psicología , Humanos , Estudios Longitudinales , Masculino , Proyectos Piloto , Polisomnografía/métodos , Esquizofrenia/genética , Esquizofrenia/fisiopatología , Encuestas y Cuestionarios , Adulto Joven
14.
Brain ; 138(Pt 4): 862-74, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25724202

RESUMEN

Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Sueño/fisiología , Investigación Biomédica Traslacional/métodos , Animales , Humanos , Proteínas de Membrana de los Lisosomas , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Ovinos
15.
Eur J Neurosci ; 39(7): 1091-106, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24712989

RESUMEN

The neurophysiology of non-rapid eye movement sleep is characterized by the occurrence of neural network oscillations with distinct origins and frequencies, which act in concert to support sleep-dependent information processing. Thalamocortical circuits generate slow (0.25-4 Hz) oscillations reflecting synchronized temporal windows of cortical activity, whereas concurrent waxing and waning spindle oscillations (8-15 Hz) act to facilitate cortical plasticity. Meanwhile, fast (140-200 Hz) and brief (< 200 ms) hippocampal ripple oscillations are associated with the reactivation of neural assemblies recruited during prior wakefulness. The extent of the forebrain areas engaged by these oscillations, and the variety of cellular and synaptic mechanisms involved, make them sensitive assays of distributed network function. Each of these three oscillations makes crucial contributions to the offline memory consolidation processes supported by non-rapid eye movement sleep. Slow, spindle and ripple oscillations are therefore potential surrogates of cognitive function and may be used as diagnostic measures in a range of brain diseases. We review the evidence for disrupted slow, spindle and ripple oscillations in schizophrenia, linking pathophysiological mechanisms to the functional impact of these neurophysiological changes and drawing links with the cognitive symptoms that accompany this condition. Finally, we discuss potential therapies that may normalize the coordinated activity of these three oscillations in order to restore healthy cognitive function.


Asunto(s)
Ondas Encefálicas , Esquizofrenia/fisiopatología , Sueño REM , Animales , Cognición , Hipocampo/fisiopatología , Humanos , Transmisión Sináptica
16.
Neuron ; 76(3): 526-33, 2012 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-23141065

RESUMEN

Rhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases.


Asunto(s)
Modelos Animales de Enfermedad , Hipocampo/crecimiento & desarrollo , Corteza Prefrontal/crecimiento & desarrollo , Esquizofrenia/fisiopatología , Sueño/fisiología , Animales , Electroencefalografía/métodos , Femenino , Vías Nerviosas/crecimiento & desarrollo , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA