Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Diagnostics (Basel) ; 14(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39272771

RESUMEN

Electroencephalogram (EEG) signals contain information about the brain's state as they reflect the brain's functioning. However, the manual interpretation of EEG signals is tedious and time-consuming. Therefore, automatic EEG translation models need to be proposed using machine learning methods. In this study, we proposed an innovative method to achieve high classification performance with explainable results. We introduce channel-based transformation, a channel pattern (ChannelPat), the t algorithm, and Lobish (a symbolic language). By using channel-based transformation, EEG signals were encoded using the index of the channels. The proposed ChannelPat feature extractor encoded the transition between two channels and served as a histogram-based feature extractor. An iterative neighborhood component analysis (INCA) feature selector was employed to select the most informative features, and the selected features were fed into a new ensemble k-nearest neighbor (tkNN) classifier. To evaluate the classification capability of the proposed channel-based EEG language detection model, a new EEG language dataset comprising Arabic and Turkish was collected. Additionally, Lobish was introduced to obtain explainable outcomes from the proposed EEG language detection model. The proposed channel-based feature engineering model was applied to the collected EEG language dataset, achieving a classification accuracy of 98.59%. Lobish extracted meaningful information from the cortex of the brain for language detection.

2.
Cogn Neurodyn ; 18(4): 1609-1625, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104684

RESUMEN

In this study, attention deficit hyperactivity disorder (ADHD), a childhood neurodevelopmental disorder, is being studied alongside its comorbidity, conduct disorder (CD), a behavioral disorder. Because ADHD and CD share commonalities, distinguishing them is difficult, thus increasing the risk of misdiagnosis. It is crucial that these two conditions are not mistakenly identified as the same because the treatment plan varies depending on whether the patient has CD or ADHD. Hence, this study proposes an electroencephalogram (EEG)-based deep learning system known as ADHD/CD-NET that is capable of objectively distinguishing ADHD, ADHD + CD, and CD. The 12-channel EEG signals were first segmented and converted into channel-wise continuous wavelet transform (CWT) correlation matrices. The resulting matrices were then used to train the convolutional neural network (CNN) model, and the model's performance was evaluated using 10-fold cross-validation. Gradient-weighted class activation mapping (Grad-CAM) was also used to provide explanations for the prediction result made by the 'black box' CNN model. Internal private dataset (45 ADHD, 62 ADHD + CD and 16 CD) and external public dataset (61 ADHD and 60 healthy controls) were used to evaluate ADHD/CD-NET. As a result, ADHD/CD-NET achieved classification accuracy, sensitivity, specificity, and precision of 93.70%, 90.83%, 95.35% and 91.85% for the internal evaluation, and 98.19%, 98.36%, 98.03% and 98.06% for the external evaluation. Grad-CAM also identified significant channels that contributed to the diagnosis outcome. Therefore, ADHD/CD-NET can perform temporal localization and choose significant EEG channels for diagnosis, thus providing objective analysis for mental health professionals and clinicians to consider when making a diagnosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10028-2.

3.
Cogn Neurodyn ; 18(2): 383-404, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38699621

RESUMEN

Fibromyalgia is a soft tissue rheumatism with significant qualitative and quantitative impact on sleep macro and micro architecture. The primary objective of this study is to analyze and identify automatically healthy individuals and those with fibromyalgia using sleep electroencephalography (EEG) signals. The study focused on the automatic detection and interpretation of EEG signals obtained from fibromyalgia patients. In this work, the sleep EEG signals are divided into 15-s and a total of 5358 (3411 healthy control and 1947 fibromyalgia) EEG segments are obtained from 16 fibromyalgia and 16 normal subjects. Our developed model has advanced multilevel feature extraction architecture and hence, we used a new feature extractor called GluPat, inspired by the glucose chemical, with a new pooling approach inspired by the D'hondt selection system. Furthermore, our proposed method incorporated feature selection techniques using iterative neighborhood component analysis and iterative Chi2 methods. These selection mechanisms enabled the identification of discriminative features for accurate classification. In the classification phase, we employed a support vector machine and k-nearest neighbor algorithms to classify the EEG signals with leave-one-record-out (LORO) and tenfold cross-validation (CV) techniques. All results are calculated channel-wise and iterative majority voting is used to obtain generalized results. The best results were determined using the greedy algorithm. The developed model achieved a detection accuracy of 100% and 91.83% with a tenfold and LORO CV strategies, respectively using sleep stage (2 + 3) EEG signals. Our generated model is simple and has linear time complexity.

4.
Comput Biol Med ; 172: 108207, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38489986

RESUMEN

Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.


Asunto(s)
Hipertensión , Medicina , Humanos , Inteligencia Artificial , Electrocardiografía , Hipertensión/diagnóstico por imagen , Angiografía por Resonancia Magnética
5.
Comput Biol Med ; 173: 108280, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547655

RESUMEN

BACKGROUND: Timely detection of neurodevelopmental and neurological conditions is crucial for early intervention. Specific Language Impairment (SLI) in children and Parkinson's disease (PD) manifests in speech disturbances that may be exploited for diagnostic screening using recorded speech signals. We were motivated to develop an accurate yet computationally lightweight model for speech-based detection of SLI and PD, employing novel feature engineering techniques to mimic the adaptable dynamic weight assignment network capability of deep learning architectures. MATERIALS AND METHODS: In this research, we have introduced an advanced feature engineering model incorporating a novel feature extraction function, the Factor Lattice Pattern (FLP), which is a quantum-inspired method and uses a superposition-like mechanism, making it dynamic in nature. The FLP encompasses eight distinct patterns, from which the most appropriate pattern was discerned based on the data structure. Through the implementation of the FLP, we automatically extracted signal-specific textural features. Additionally, we developed a new feature engineering model to assess the efficacy of the FLP. This model is self-organizing, producing nine potential results and subsequently choosing the optimal one. Our speech classification framework consists of (1) feature extraction using the proposed FLP and a statistical feature extractor; (2) feature selection employing iterative neighborhood component analysis and an intersection-based feature selector; (3) classification via support vector machine and k-nearest neighbors; and (4) outcome determination using combinational majority voting to select the most favorable results. RESULTS: To validate the classification capabilities of our proposed feature engineering model, designed to automatically detect PD and SLI, we employed three speech datasets of PD and SLI patients. Our presented FLP-centric model achieved classification accuracy of more than 95% and 99.79% for all PD and SLI datasets, respectively. CONCLUSIONS: Our results indicate that the proposed model is an accurate alternative to deep learning models in classifying neurological conditions using speech signals.


Asunto(s)
Enfermedad de Parkinson , Trastorno Específico del Lenguaje , Niño , Humanos , Habla , Enfermedad de Parkinson/diagnóstico , Máquina de Vectores de Soporte
6.
Comput Methods Programs Biomed ; 247: 108076, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422891

RESUMEN

BACKGROUND AND AIM: Anxiety disorder is common; early diagnosis is crucial for management. Anxiety can induce physiological changes in the brain and heart. We aimed to develop an efficient and accurate handcrafted feature engineering model for automated anxiety detection using ECG signals. MATERIALS AND METHODS: We studied open-access electrocardiography (ECG) data of 19 subjects collected via wearable sensors while they were shown videos that might induce anxiety. Using the Hamilton Anxiety Rating Scale, subjects are categorized into normal, light anxiety, moderate anxiety, and severe anxiety groups. ECGs were divided into non-overlapping 4- (Case 1), 5- (Case 2), and 6-second (Case 3) segments for analysis. We proposed a self-organized dynamic pattern-based feature extraction function-probabilistic binary pattern (PBP)-in which patterns within the function were determined by the probabilities of the input signal-dependent values. This was combined with tunable q-factor wavelet transform to facilitate multileveled generation of feature vectors in both spatial and frequency domains. Neighborhood component analysis and Chi2 functions were used to select features and reduce data dimensionality. Shallow k-nearest neighbors and support vector machine classifiers were used to calculate four (=2 × 2) classifier-wise results per input signal. From the latter, novel self-organized combinational majority voting was applied to calculate an additional five voted results. The optimal final model outcome was chosen from among the nine (classifier-wise and voted) results using a greedy algorithm. RESULTS: Our model achieved classification accuracies of over 98.5 % for all three cases. Ablation studies confirmed the incremental accuracy of PBP-based feature engineering over traditional local binary pattern feature extraction. CONCLUSIONS: The results demonstrated the feasibility and accuracy of our PBP-based feature engineering model for anxiety classification using ECG signals.


Asunto(s)
Electrocardiografía , Análisis de Ondículas , Humanos , Algoritmos , Ansiedad/diagnóstico , Trastornos de Ansiedad , Procesamiento de Señales Asistido por Computador
7.
Comput Biol Med ; 165: 107441, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683529

RESUMEN

Uncertainty estimation in healthcare involves quantifying and understanding the inherent uncertainty or variability associated with medical predictions, diagnoses, and treatment outcomes. In this era of Artificial Intelligence (AI) models, uncertainty estimation becomes vital to ensure safe decision-making in the medical field. Therefore, this review focuses on the application of uncertainty techniques to machine and deep learning models in healthcare. A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis revealed that Bayesian methods were the predominant technique for uncertainty quantification in machine learning models, with Fuzzy systems being the second most used approach. Regarding deep learning models, Bayesian methods emerged as the most prevalent approach, finding application in nearly all aspects of medical imaging. Most of the studies reported in this paper focused on medical images, highlighting the prevalent application of uncertainty quantification techniques using deep learning models compared to machine learning models. Interestingly, we observed a scarcity of studies applying uncertainty quantification to physiological signals. Thus, future research on uncertainty quantification should prioritize investigating the application of these techniques to physiological signals. Overall, our review highlights the significance of integrating uncertainty techniques in healthcare applications of machine learning and deep learning models. This can provide valuable insights and practical solutions to manage uncertainty in real-world medical data, ultimately improving the accuracy and reliability of medical diagnoses and treatment recommendations.


Asunto(s)
Inteligencia Artificial , Atención a la Salud , Teorema de Bayes , Reproducibilidad de los Resultados , Incertidumbre
8.
Comput Methods Programs Biomed ; 241: 107746, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37660550

RESUMEN

BACKGROUND AND OBJECTIVE: Obstructive airway diseases, including asthma and Chronic Obstructive Pulmonary Disease (COPD), are two of the most common chronic respiratory health problems. Both of these conditions require health professional expertise in making a diagnosis. Hence, this process is time intensive for healthcare providers and the diagnostic quality is subject to intra- and inter- operator variability. In this study we investigate the role of automated detection of obstructive airway diseases to reduce cost and improve diagnostic quality. METHODS: We investigated the existing body of evidence and applied Preferred Reporting Items for Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to search records in IEEE, Google scholar, and PubMed databases. We identified 65 papers that were published from 2013 to 2022 and these papers cover 67 different studies. The review process was structured according to the medical data that was used for disease detection. We identified six main categories, namely air flow, genetic, imaging, signals, and miscellaneous. For each of these categories, we report both disease detection methods and their performance. RESULTS: We found that medical imaging was used in 14 of the reviewed studies as data for automated obstructive airway disease detection. Genetics and physiological signals were used in 13 studies. Medical records and air flow were used in 9 and 7 studies, respectively. Most papers were published in 2020 and we found three times more work on Machine Learning (ML) when compared to Deep Learning (DL). Statistical analysis shows that DL techniques achieve higher Accuracy (ACC) when compared to ML. Convolutional Neural Network (CNN) is the most common DL classifier and Support Vector Machine (SVM) is the most widely used ML classifier. During our review, we discovered only two publicly available asthma and COPD datasets. Most studies used private clinical datasets, so data size and data composition are inconsistent. CONCLUSIONS: Our review results indicate that Artificial Intelligence (AI) can improve both decision quality and efficiency of health professionals during COPD and asthma diagnosis. However, we found several limitations in this review, such as a lack of dataset consistency, a limited dataset and remote monitoring was not sufficiently explored. We appeal to society to accept and trust computer aided airflow obstructive diseases diagnosis and we encourage health professionals to work closely with AI scientists to promote automated detection in clinical practice and hospital settings.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Inteligencia Artificial , Fenómenos Fisiológicos Respiratorios , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Asma/diagnóstico , Bases de Datos Factuales
9.
J Digit Imaging ; 36(6): 2441-2460, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37537514

RESUMEN

Detecting neurological abnormalities such as brain tumors and Alzheimer's disease (AD) using magnetic resonance imaging (MRI) images is an important research topic in the literature. Numerous machine learning models have been used to detect brain abnormalities accurately. This study addresses the problem of detecting neurological abnormalities in MRI. The motivation behind this problem lies in the need for accurate and efficient methods to assist neurologists in the diagnosis of these disorders. In addition, many deep learning techniques have been applied to MRI to develop accurate brain abnormality detection models, but these networks have high time complexity. Hence, a novel hand-modeled feature-based learning network is presented to reduce the time complexity and obtain high classification performance. The model proposed in this work uses a new feature generation architecture named pyramid and fixed-size patch (PFP). The main aim of the proposed PFP structure is to attain high classification performance using essential feature extractors with both multilevel and local features. Furthermore, the PFP feature extractor generates low- and high-level features using a handcrafted extractor. To obtain the high discriminative feature extraction ability of the PFP, we have used histogram-oriented gradients (HOG); hence, it is named PFP-HOG. Furthermore, the iterative Chi2 (IChi2) is utilized to choose the clinically significant features. Finally, the k-nearest neighbors (kNN) with tenfold cross-validation is used for automated classification. Four MRI neurological databases (AD dataset, brain tumor dataset 1, brain tumor dataset 2, and merged dataset) have been utilized to develop our model. PFP-HOG and IChi2-based models attained 100%, 94.98%, 98.19%, and 97.80% using the AD dataset, brain tumor dataset1, brain tumor dataset 2, and merged brain MRI dataset, respectively. These findings not only provide an accurate and robust classification of various neurological disorders using MRI but also hold the potential to assist neurologists in validating manual MRI brain abnormality screening.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias Encefálicas , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Aprendizaje Automático , Enfermedad de Alzheimer/diagnóstico por imagen
10.
Sensors (Basel) ; 23(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631569

RESUMEN

Anxiety, learning disabilities, and depression are the symptoms of attention deficit hyperactivity disorder (ADHD), an isogenous pattern of hyperactivity, impulsivity, and inattention. For the early diagnosis of ADHD, electroencephalogram (EEG) signals are widely used. However, the direct analysis of an EEG is highly challenging as it is time-consuming, nonlinear, and nonstationary in nature. Thus, in this paper, a novel approach (LSGP-USFNet) is developed based on the patterns obtained from Ulam's spiral and Sophia Germain's prime numbers. The EEG signals are initially filtered to remove the noise and segmented with a non-overlapping sliding window of a length of 512 samples. Then, a time-frequency analysis approach, namely continuous wavelet transform, is applied to each channel of the segmented EEG signal to interpret it in the time and frequency domain. The obtained time-frequency representation is saved as a time-frequency image, and a non-overlapping n × n sliding window is applied to this image for patch extraction. An n × n Ulam's spiral is localized on each patch, and the gray levels are acquired from this patch as features where Sophie Germain's primes are located in Ulam's spiral. All gray tones from all patches are concatenated to construct the features for ADHD and normal classes. A gray tone selection algorithm, namely ReliefF, is employed on the representative features to acquire the final most important gray tones. The support vector machine classifier is used with a 10-fold cross-validation criteria. Our proposed approach, LSGP-USFNet, was developed using a publicly available dataset and obtained an accuracy of 97.46% in detecting ADHD automatically. Our generated model is ready to be validated using a bigger database and it can also be used to detect other children's neurological disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Niño , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Electroencefalografía , Algoritmos , Ansiedad , Trastornos de Ansiedad , Niacinamida
11.
Comput Methods Programs Biomed ; 241: 107775, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651817

RESUMEN

BACKGROUND AND OBJECTIVE: Attention Deficit Hyperactivity problem (ADHD) is a common neurodevelopment problem in children and adolescents that can lead to long-term challenges in life outcomes if left untreated. Also, ADHD is frequently associated with Conduct Disorder (CD), and multiple research have found similarities in clinical signs and behavioral symptoms between both diseases, making differentiation between ADHD, ADHD comorbid with CD (ADHD+CD), and CD a subjective diagnosis. Therefore, the goal of this pilot study is to create the first explainable deep learning (DL) model for objective ECG-based ADHD/CD diagnosis as having an objective biomarker may improve diagnostic accuracy. METHODS: The dataset used in this study consist of ECG data collected from 45 ADHD, 62 ADHD+CD, and 16 CD patients at the Child Guidance Clinic in Singapore. The ECG data were segmented into 2 s epochs and directly used to train our 1-dimensional (1D) convolutional neural network (CNN) model. RESULTS: The proposed model yielded 96.04% classification accuracy, 96.26% precision, 95.99% sensitivity, and 96.11% F1-score. The Gradient-weighted class activation mapping (Grad-CAM) function was also used to highlight the important ECG characteristics at specific time points that most impact the classification score. CONCLUSION: In addition to achieving model performance results with our suggested DL method, Grad-CAM's implementation also offers vital temporal data that clinicians and other mental healthcare professionals can use to make wise medical judgments. We hope that by conducting this pilot study, we will be able to encourage larger-scale research with a larger biosignal dataset. Hence allowing biosignal-based computer-aided diagnostic (CAD) tools to be implemented in healthcare and ambulatory settings, as ECG can be easily obtained via wearable devices such as smartwatches.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno de la Conducta , Adolescente , Niño , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Proyectos Piloto , Redes Neurales de la Computación , Electrocardiografía
12.
Sensors (Basel) ; 23(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514877

RESUMEN

Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening.


Asunto(s)
Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Redes Neurales de la Computación , Rayos X , Detección Precoz del Cáncer , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón
13.
Comput Biol Med ; 163: 107063, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37329621

RESUMEN

A brain tumor is an abnormal mass of tissue located inside the skull. In addition to putting pressure on the healthy parts of the brain, it can lead to significant health problems. Depending on the region of the brain tumor, it can cause a wide range of health issues. As malignant brain tumors grow rapidly, the mortality rate of individuals with this cancer can increase substantially with each passing week. Hence it is vital to detect these tumors early so that preventive measures can be taken at the initial stages. Computer-aided diagnostic (CAD) systems, in coordination with artificial intelligence (AI) techniques, have a vital role in the early detection of this disorder. In this review, we studied 124 research articles published from 2000 to 2022. Here, the challenges faced by CAD systems based on different modalities are highlighted along with the current requirements of this domain and future prospects in this area of research.


Asunto(s)
Inteligencia Artificial , Neoplasias Encefálicas , Humanos , Encéfalo , Neoplasias Encefálicas/diagnóstico , Cráneo , Radiofármacos
14.
Comput Biol Med ; 155: 106649, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36805219

RESUMEN

BACKGROUND: Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively. METHODOLOGY: After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: (1) medical note classification, (2) clinical entity recognition, (3) text summarisation, (4) deep learning (DL) and transfer learning architecture, (5) information extraction, (6) Medical language translation and (7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULT AND DISCUSSION: EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders. CONCLUSION: We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.


Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Humanos , Aprendizaje Automático , Almacenamiento y Recuperación de la Información , Atención a la Salud
15.
J Digit Imaging ; 36(3): 973-987, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36797543

RESUMEN

Modern computer vision algorithms are based on convolutional neural networks (CNNs), and both end-to-end learning and transfer learning modes have been used with CNN for image classification. Thus, automated brain tumor classification models have been proposed by deploying CNNs to help medical professionals. Our primary objective is to increase the classification performance using CNN. Therefore, a patch-based deep feature engineering model has been proposed in this work. Nowadays, patch division techniques have been used to attain high classification performance, and variable-sized patches have achieved good results. In this work, we have used three types of patches of different sizes (32 × 32, 56 × 56, 112 × 112). Six feature vectors have been obtained using these patches and two layers of the pretrained ResNet50 (global average pooling and fully connected layers). In the feature selection phase, three selectors-neighborhood component analysis (NCA), Chi2, and ReliefF-have been used, and 18 final feature vectors have been obtained. By deploying k nearest neighbors (kNN), 18 results have been calculated. Iterative hard majority voting (IHMV) has been applied to compute the general classification accuracy of this framework. This model uses different patches, feature extractors (two layers of the ResNet50 have been utilized as feature extractors), and selectors, making this a framework that we have named PatchResNet. A public brain image dataset containing four classes (glioblastoma multiforme (GBM), meningioma, pituitary tumor, healthy) has been used to develop the proposed PatchResNet model. Our proposed PatchResNet attained 98.10% classification accuracy using the public brain tumor image dataset. The developed PatchResNet model obtained high classification accuracy and has the advantage of being a self-organized framework. Therefore, the proposed method can choose the best result validation prediction vectors and achieve high image classification performance.


Asunto(s)
Neoplasias Encefálicas , Redes Neurales de la Computación , Humanos , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética , Encéfalo
16.
J Digit Imaging ; 36(3): 879-892, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36658376

RESUMEN

Incidental adrenal masses are seen in 5% of abdominal computed tomography (CT) examinations. Accurate discrimination of the possible differential diagnoses has important therapeutic and prognostic significance. A new handcrafted machine learning method has been developed for the automated and accurate classification of adrenal gland CT images. A new dataset comprising 759 adrenal gland CT image slices from 96 subjects were analyzed. Experts had labeled the collected images into four classes: normal, pheochromocytoma, lipid-poor adenoma, and metastasis. The images were preprocessed, resized, and the image features were extracted using the center symmetric local binary pattern (CS-LBP) method. CT images were next divided into 16 × 16 fixed-size patches, and further feature extraction using CS-LBP was performed on these patches. Next, extracted features were selected using neighborhood component analysis (NCA) to obtain the most meaningful ones for downstream classification. Finally, the selected features were classified using k-nearest neighbor (kNN), support vector machine (SVM), and neural network (NN) classifiers to obtain the optimum performing model. Our proposed method obtained an accuracy of 99.87%, 99.21%, and 98.81% with kNN, SVM, and NN classifiers, respectively. Hence, the kNN classifier yielded the highest classification results with no pathological image misclassified as normal. Our developed fixed patch CS-LBP-based automatic classification of adrenal gland pathologies on CT images is highly accurate and has low time complexity [Formula: see text]. It has the potential to be used for screening of adrenal gland disease classes with CT images.


Asunto(s)
Adenoma , Enfermedades de las Glándulas Suprarrenales , Humanos , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación , Aprendizaje Automático
17.
Physiol Meas ; 44(3)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36599170

RESUMEN

Objective.Schizophrenia (SZ) is a severe, chronic psychiatric-cognitive disorder. The primary objective of this work is to present a handcrafted model using state-of-the-art technique to detect SZ accurately with EEG signals.Approach.In our proposed work, the features are generated using a histogram-based generator and an iterative decomposition model. The graph-based molecular structure of the carbon chain is employed to generate low-level features. Hence, the developed feature generation model is called the carbon chain pattern (CCP). An iterative tunable q-factor wavelet transform (ITQWT) technique is implemented in the feature extraction phase to generate various sub-bands of the EEG signal. The CCP was applied to the generated sub-bands to obtain several feature vectors. The clinically significant features were selected using iterative neighborhood component analysis (INCA). The selected features were then classified using the k nearest neighbor (kNN) with a 10-fold cross-validation strategy. Finally, the iterative weighted majority method was used to obtain the results in multiple channels.Main results.The presented CCP-ITQWT and INCA-based automated model achieved an accuracy of 95.84% and 99.20% using a single channel and majority voting method, respectively with kNN classifier.Significance.Our results highlight the success of the proposed CCP-ITQWT and INCA-based model in the automated detection of SZ using EEG signals.


Asunto(s)
Disfunción Cognitiva , Esquizofrenia , Humanos , Electroencefalografía/métodos , Esquizofrenia/diagnóstico , Análisis de Ondículas , Carbono , Algoritmos
18.
Comput Methods Programs Biomed ; 230: 107320, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36608429

RESUMEN

BACKGROUND AND OBJECTIVE: Celiac Disease (CD) is characterized by gluten intolerance in genetically predisposed individuals. High disease prevalence, absence of a cure, and low diagnosis rates make this disease a public health problem. The diagnosis of CD predominantly relies on recognizing characteristic mucosal alterations of the small intestine, such as villous atrophy, crypt hyperplasia, and intraepithelial lymphocytosis. However, these changes are not entirely specific to CD and overlap with Non-Celiac Duodenitis (NCD) due to various etiologies. We investigated whether Artificial Intelligence (AI) models could assist in distinguishing normal, CD, and NCD (and unaffected individuals) based on the characteristics of small intestinal lamina propria (LP). METHODS: Our method was developed using a dataset comprising high magnification biopsy images of the duodenal LP compartment of CD patients with different clinical stages of CD, those with NCD, and individuals lacking an intestinal inflammatory disorder (controls). A pre-processing step was used to standardize and enhance the acquired images. RESULTS: For the normal controls versus CD use case, a Support Vector Machine (SVM) achieved an Accuracy (ACC) of 98.53%. For a second use case, we investigated the ability of the classification algorithm to differentiate between normal controls and NCD. In this use case, the SVM algorithm with linear kernel outperformed all the tested classifiers by achieving 98.55% ACC. CONCLUSIONS: To the best of our knowledge, this is the first study that documents automated differentiation between normal, NCD, and CD biopsy images. These findings are a stepping stone toward automated biopsy image analysis that can significantly benefit patients and healthcare providers.


Asunto(s)
Enfermedad Celíaca , Duodenitis , Enfermedades no Transmisibles , Humanos , Enfermedad Celíaca/diagnóstico , Duodenitis/diagnóstico por imagen , Duodenitis/patología , Inteligencia Artificial , Biopsia , Mucosa Intestinal/diagnóstico por imagen
19.
Inform Med Unlocked ; 36: 101158, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36618887

RESUMEN

Background: Chest computed tomography (CT) has a high sensitivity for detecting COVID-19 lung involvement and is widely used for diagnosis and disease monitoring. We proposed a new image classification model, swin-textural, that combined swin-based patch division with textual feature extraction for automated diagnosis of COVID-19 on chest CT images. The main objective of this work is to evaluate the performance of the swin architecture in feature engineering. Material and method: We used a public dataset comprising 2167, 1247, and 757 (total 4171) transverse chest CT images belonging to 80, 80, and 50 (total 210) subjects with COVID-19, other non-COVID lung conditions, and normal lung findings. In our model, resized 420 × 420 input images were divided using uniform square patches of incremental dimensions, which yielded ten feature extraction layers. At each layer, local binary pattern and local phase quantization operations extracted textural features from individual patches as well as the undivided input image. Iterative neighborhood component analysis was used to select the most informative set of features to form ten selected feature vectors and also used to select the 11th vector from among the top selected feature vectors with accuracy >97.5%. The downstream kNN classifier calculated 11 prediction vectors. From these, iterative hard majority voting generated another nine voted prediction vectors. Finally, the best result among the twenty was determined using a greedy algorithm. Results: Swin-textural attained 98.71% three-class classification accuracy, outperforming published deep learning models trained on the same dataset. The model has linear time complexity. Conclusions: Our handcrafted computationally lightweight swin-textural model can detect COVID-19 accurately on chest CT images with low misclassification rates. The model can be implemented in hospitals for efficient automated screening of COVID-19 on chest CT images. Moreover, findings demonstrate that our presented swin-textural is a self-organized, highly accurate, and lightweight image classification model and is better than the compared deep learning models for this dataset.

20.
Neural Comput Appl ; 35(8): 6065-6077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36408288

RESUMEN

Specific language impairment (SLI) is one of the most common diseases in children, and early diagnosis can help to obtain better timely therapy economically. It is difficult and time-consuming for clinicians to accurately detect SLI through standard clinical assessments. Hence, machine learning algorithms have been developed to assist in the accurate diagnosis of SLI. This work aims to investigate the graph of the favipiravir molecule-based feature extraction function and propose an accurate SLI detection model using vowels. We proposed a novel handcrafted machine learning framework. This architecture comprises the favipiravir molecular structure pattern, statistical feature extractor, wavelet packet decomposition (WPD), iterative neighborhood component analysis (INCA), and support vector machine (SVM) classifier. Two feature extraction models, statistical and textural, are employed in the handcrafted feature generation methodology. A new nature-inspired graph-based feature extractor that uses the chemical depiction of the favipiravir (favipiravir became popular with the COVID-19 pandemic) is employed for feature extraction. Finally, the proposed favipiravir pattern, statistical feature extractor, and wavelet packet decomposition are used to create a feature vector. Moreover, a statistical feature extractor is used in this work. The WPD generates multilevel features, and the most meaningful features are selected using the NCA feature selector. Finally, these chosen features are fed to SVM classifier for automated classification. Two validation methods, (i) leave one subject out (LOSO) and (ii) tenfold cross-validations (CV), are used to obtain robust classification results. Our proposed favipiravir pattern-based model developed using a vowel dataset can detect SLI children with an accuracy of 99.87% and 98.86% using tenfold and LOSO CV strategies, respectively. These results demonstrated the high vowel classification ability of the proposed favipiravir pattern-based model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA