Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Cell Biochem ; 125(1): 89-99, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047473

RESUMEN

Checkpoint kinases Chk1, Chk2, Wee1 are playing a key role in DNA damage response and genomic integrity. Cancer-associated mutations identified in human Chk1, Chk2, and Wee1 were retrieved to understand the function associated with the mutation and also alterations in the folding pattern. Therefore, an attempt has been made to identify deleterious effect of variants using in silico and structure-based approach. Variants of uncertain significance for Chk1, Chk2, and Wee1 were retrieved from different databases and four prediction servers were employed to predict pathogenicity of mutations. Further, Interpro, I-Mutant 3.0, Consurf, TM-align, and have (y)our protein explained were used for comprehensive study of the deleterious effects of variants. The sequences of Chk1, Chk2, and Wee1 were analyzed using Clustal Omega, and the three-dimensional structures of the proteins were aligned using TM-align. The molecular dynamics simulations were performed to explore the differences in folding pattern between Chk1, Chk2, Wee1 wild-type, and mutant protein and also to evaluate the structural integrity. Thirty-six variants in Chk1, 250 Variants in Chk2, and 29 in Wee1 were categorized as pathogenic using in silico prediction tools. Furthermore, 25 mutations in Chk1, 189 in Chk2, and 14 in Wee1 were highly conserved, possessing deleterious effect and also influencing the protein structure and function. These identified mutations may provide underlying genetic intricacies to serve as potential targets for therapeutic inventions and clinical management.


Asunto(s)
Neoplasias , Proteínas Quinasas , Humanos , Proteínas Quinasas/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Mutación , Quinasa de Punto de Control 2/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
2.
Genomics Inform ; 21(3): e30, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37813626

RESUMEN

Ephs belong to the largest family of receptor tyrosine kinase and are highly conserved both sequentially and structurally. The structural organization of Eph is similar to other receptor tyrosine kinases; constituting the extracellular ligand binding domain, a fibronectin domain followed by intracellular juxtamembrane kinase, and SAM domain. Eph binds to respective ephrin ligand, through the ligand binding domain and forms a tetrameric complex to activate the kinase domain. Eph-ephrin regulates many downstream pathways that lead to physiological events such as cell migration, proliferation, and growth. Therefore, considering the importance of Eph-ephrin class of protein in tumorigenesis, 7,620 clinically reported missense mutations belonging to the class of variables of unknown significance were retrieved from cBioPortal and evaluated for pathogenicity. Thirty-two mutations predicted to be pathogenic using SIFT, Polyphen-2, PROVEAN, SNPs&GO, PMut, iSTABLE, and PremPS in-silico tools were found located either in critical functional regions or encompassing interactions at the binding interface of Eph-ephrin. However, seven were reported in nonsmall cell lung cancer (NSCLC). Considering the relevance of receptor tyrosine kinases and Eph in NSCLC, these seven mutations were assessed for change in the folding pattern using molecular dynamic simulation. Structural alterations, stability, flexibility, compactness, and solvent-exposed area was observed in EphA3 Trp790Cys, EphA7 Leu749Phe, EphB1 Gly685Cys, EphB4 Val748Ala, and Ephrin A2 Trp112Cys. Hence, it can be concluded that the evaluated mutations have potential to alter the folding pattern and thus can be further validated by in-vitro, structural and in-vivo studies for clinical management.

3.
ACS Omega ; 8(11): 10266-10277, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969410

RESUMEN

RAD genes, known as double-strand break repair proteins, play a major role in maintaining the genomic integrity of a cell by carrying out essential DNA repair functions via double-strand break repair pathways. Mutations in the RAD class of proteins show high susceptibility to breast and ovarian cancers; however, adequate research on the mutations identified in these genes has not been extensively reported for their deleterious effects. Changes in the folding pattern of RAD proteins play an important role in protein-protein interactions and also functions. Missense mutations identified from four cancer databases, cBioPortal, COSMIC, ClinVar, and gnomAD, cause aberrant conformations, which may lead to faulty DNA repair mechanisms. It is therefore necessary to evaluate the effects of pathogenic mutations of RAD proteins and their subsequent role in breast and ovarian cancers. In this study, we have used eight computational prediction servers to analyze pathogenic mutations and understand their effects on the protein structure and function. A total of 5122 missense mutations were identified from four different cancer databases, of which 1165 were predicted to be pathogenic using at least five pathogenicity prediction servers. These mutations were characterized as high-risk mutations based on their location in the conserved domains and subsequently subjected to structural stability characterization. The mutations included in the present study were selected from clinically relevant mutants in breast cancer pedigrees. Comparative folding patterns and intra-atomic interaction results showed alterations in the structural behavior of RAD proteins, specifically RAD51C triggered by mutations G125V and L138F and RAD51D triggered by mutations S207L and E233G.

4.
Bioorg Med Chem Lett ; 25(24): 5732-6, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26546212

RESUMEN

Enzymatic four-component reactions are very rare although three-component enzymatic promiscuous reactions are widely reported. Herein, we report an efficient PASE protocol for the synthesis of potentially lipophilic zwitterionic 5-monosubstituted barbiturates by four component reaction of mixture of ethyl acetoacetate, hydrazine hydrate, aldehyde and barbituric acid in ethanol at room temperature. Seven different lipases were screened for their promiscuous activity towards the synthesis of 5-monosubstituted barbiturates and the lipase from porcine pancreas (PPL) found to give optimum efficiency. The zwitterionic 5-monosubstituted barbiturates with pyrazolyl ring showed promising pharmacological activity upon screening for antibacterial and apoptotic properties.


Asunto(s)
Antibacterianos/química , Barbitúricos/química , Lipasa/metabolismo , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Barbitúricos/metabolismo , Barbitúricos/toxicidad , Biocatálisis , Línea Celular Tumoral , Cristalografía por Rayos X , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Páncreas/enzimología , Pirazoles/química , Porcinos
5.
Genomics ; 105(3): 182-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25546474

RESUMEN

The present research work reports the whole genome sequence analysis of Pseudomonas aeruginosa strain N002 isolated from crude oil contaminated soil of Assam, India having high crude oil degradation ability. The whole genome of the strain N002 was sequenced by shotgun sequencing using Ion Torrent method and complete genome sequence analysis was done. It was found that the strain N002 revealed versatility for degradation, emulsification and metabolizing of crude oil. Analysis of cluster of orthologous group (COG) revealed that N002 has significantly higher gene abundance for cell motility, lipid transport and metabolism, intracellular trafficking, secretion and vesicular transport, secondary metabolite biosynthesis, transport and catabolism, signal transduction mechanism and transcription than average levels found in other genome sequences of the same bacterial species. However, lower gene abundance for carbohydrate transport and metabolism, replication, recombination and repair, translation, ribosomal structure, biogenesis was observed in N002 than average levels of other bacterial species.


Asunto(s)
Genoma Bacteriano , Petróleo/metabolismo , Pseudomonas aeruginosa/genética , Secuencia de Bases , Bases de Datos de Ácidos Nucleicos , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Pseudomonas aeruginosa/metabolismo , Análisis de Secuencia de ADN
6.
Genome Announc ; 1(1)2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23405324

RESUMEN

Here, we report the draft genome sequence of crude oil-degrading Pseudomonas aeruginosa strain N002, isolated from a crude oil-polluted soil sample from Geleky, Assam, India. Multiple genes potentially involved in crude oil degradation were identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA