Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
bioRxiv ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39416069

RESUMEN

Gene therapy holds great therapeutic potential. Yet, controlling cargo expression in single cells is limited due to the variability of delivery methods. We implement an incoherent feedforward loop based on proteolytic cleavage of CRISPR-Cas activation or inhibition systems to reduce gene expression variability against the variability of vector delivery. We demonstrate dosage control for activation and inhibition, post-delivery tuning, and RNA-based delivery, for a genome-integrated marker. We then target the RAI1 gene, the haploinsufficiency and triplosensitivity of which cause two autism-related syndromes, Smith-Magenis-Syndrome (SMS) and Potocki-Lupski-Syndrome, respectively. We demonstrate dosage control for RAI1 activation in HEK293s, Neuro-2As, and mouse cortical neurons via AAVs and lentiviruses. Finally, we activate the intact RAI1 copy in SMS patient-derived cells to an estimated two-copy healthy range, avoiding the harmful three-copy regime. Our circuit paves the way for viable therapy in dosage-sensitive disorders, creating precise and tunable gene regulation systems for basic and translational research.

2.
bioRxiv ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39386603

RESUMEN

Regulatory proteins have evolved diverse repressor domains (RDs) to enable precise context-specific repression of transcription. However, our understanding of how sequence variation impacts the functional activity of RDs is limited. To address this gap, we generated a high-throughput mutational scanning dataset measuring the repressor activity of 115,000 variant sequences spanning more than 50 RDs in human cells. We identified thousands of clinical variants with loss or gain of repressor function, including TWIST1 HLH variants associated with Saethre-Chotzen syndrome and MECP2 domain variants associated with Rett syndrome. We also leveraged these data to annotate short linear interacting motifs (SLiMs) that are critical for repression in disordered RDs. Then, we designed a deep learning model called TENet ( T ranscriptional E ffector Net work) that integrates sequence, structure and biochemical representations of sequence variants to accurately predict repressor activity. We systematically tested generalization within and across domains with varying homology using the mutational scanning dataset. Finally, we employed TENet within a directed evolution sequence editing framework to tune the activity of both structured and disordered RDs and experimentally test thousands of designs. Our work highlights critical considerations for future dataset design and model training strategies to improve functional variant prioritization and precision design of synthetic regulatory proteins.

3.
Nature ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358505

RESUMEN

Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.

4.
bioRxiv ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39345444

RESUMEN

TP53 , the most frequently mutated gene in human cancer, encodes a transcriptional activator that induces myriad downstream target genes. Despite the importance of p53 in tumor suppression, the specific p53 target genes important for tumor suppression remain unclear. Recent studies have identified the p53-inducible gene Zmat3 as a critical effector of tumor suppression, but many questions remain regarding its p53-dependence, activity across contexts, and mechanism of tumor suppression alone and in cooperation with other p53-inducible genes. To address these questions, we used Tuba-seq Ultra somatic genome editing and tumor barcoding in a mouse lung adenocarcinoma model, combinatorial in vivo CRISPR/Cas9 screens, meta-analyses of gene expression and Cancer Dependency Map data, and integrative RNA-sequencing and shotgun proteomic analyses. We established Zmat3 as a core component of p53-mediated tumor suppression and identified Cdkn1a as the most potent cooperating p53-induced gene in tumor suppression. We discovered that ZMAT3/CDKN1A serve as near-universal effectors of p53-mediated tumor suppression that regulate cell division, migration, and extracellular matrix organization. Accordingly, combined Zmat3 - Cdkn1a inactivation dramatically enhanced cell proliferation and migration compared to controls, akin to p53 inactivation. Together, our findings place ZMAT3 and CDKN1A as hubs of a p53-induced gene program that opposes tumorigenesis across various cellular and genetic contexts.

5.
Nat Immunol ; 25(10): 1943-1958, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179931

RESUMEN

The drivers of immune evasion are not entirely clear, limiting the success of cancer immunotherapies. Here we applied single-cell spatial and perturbational transcriptomics to delineate immune evasion in high-grade serous tubo-ovarian cancer. To this end, we first mapped the spatial organization of high-grade serous tubo-ovarian cancer by profiling more than 2.5 million cells in situ in 130 tumors from 94 patients. This revealed a malignant cell state that reflects tumor genetics and is predictive of T cell and natural killer cell infiltration levels and response to immune checkpoint blockade. We then performed Perturb-seq screens and identified genetic perturbations-including knockout of PTPN1 and ACTR8-that trigger this malignant cell state. Finally, we show that these perturbations, as well as a PTPN1/PTPN2 inhibitor, sensitize ovarian cancer cells to T cell and natural killer cell cytotoxicity, as predicted. This study thus identifies ways to study and target immune evasion by linking genetic variation, cell-state regulators and spatial biology.


Asunto(s)
Neoplasias Ováricas , Escape del Tumor , Femenino , Humanos , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/genética , Células Asesinas Naturales/inmunología , Análisis de la Célula Individual , Línea Celular Tumoral , Linfocitos T/inmunología , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/inmunología , Evasión Inmune , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
6.
Cell Rep ; 43(8): 114606, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39120974

RESUMEN

Patients with small-cell lung cancer (SCLC) are in dire need of more effective therapeutic options. Frequent disruption of the G1 checkpoint in SCLC cells creates a dependency on the G2/M checkpoint to maintain genomic integrity. Indeed, in pre-clinical models, inhibiting the G2/M checkpoint kinase WEE1 shows promise in inhibiting SCLC growth. However, toxicity and acquired resistance limit the clinical effectiveness of this strategy. Here, using CRISPR-Cas9 knockout screens in vitro and in vivo, we identified multiple factors influencing the response of SCLC cells to the WEE1 kinase inhibitor AZD1775, including the GCN2 kinase and other members of its signaling pathway. Rapid activation of GCN2 upon AZD1775 treatment triggers a stress response in SCLC cells. Pharmacological or genetic activation of the GCN2 pathway enhances cancer cell killing by AZD1775. Thus, activation of the GCN2 pathway represents a promising strategy to increase the efficacy of WEE1 inhibitors in SCLC.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Pirimidinonas , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Pirazoles/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Ratones Desnudos
7.
Mol Cell ; 84(11): 2104-2118.e6, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38761795

RESUMEN

Circular RNAs (circRNAs) are stable RNAs present in cell-free RNA, which may comprise cellular debris and pathogen genomes. Here, we investigate the phenomenon and mechanism of cellular uptake and intracellular fate of exogenous circRNAs. Human myeloid cells and B cells selectively internalize extracellular circRNAs. Macrophage uptake of circRNA is rapid, energy dependent, and saturable. CircRNA uptake can lead to translation of encoded sequences and antigen presentation. The route of internalization influences immune activation after circRNA uptake, with distinct gene expression programs depending on the route of RNA delivery. Genome-scale CRISPR screens and chemical inhibitor studies nominate macrophage scavenger receptor MSR1, Toll-like receptors, and mTOR signaling as key regulators of receptor-mediated phagocytosis of circRNAs, a dominant pathway to internalize circRNAs in parallel to macropinocytosis. These results suggest that cell-free circRNA serves as an "eat me" signal and danger-associated molecular pattern, indicating orderly pathways of recognition and disposal.


Asunto(s)
Macrófagos , Fagocitosis , ARN Circular , Transducción de Señal , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Macrófagos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Animales , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Linfocitos B/metabolismo , Linfocitos B/inmunología , Receptores Depuradores de Clase A/metabolismo , Receptores Depuradores de Clase A/genética , Presentación de Antígeno , Pinocitosis , Ratones
8.
Blood Adv ; 8(11): 2846-2860, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38598725

RESUMEN

ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Dasatinib , Inhibidores de Proteínas Quinasas , Dasatinib/uso terapéutico , Dasatinib/farmacología , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Humanos , Animales , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
9.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504114

RESUMEN

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , Genoma , Células K562 , ARN Guía de Sistemas CRISPR-Cas
10.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38260508

RESUMEN

Galectins are a family of mammalian glycan-binding proteins that have been implicated as regulators of myriad cellular processes including cell migration, apoptosis, and immune modulation. Several members of this family, such as galectin-1, exhibit both cell-surface and intracellular functions. Interestingly, galectin-1 can be found in the endomembrane system, nucleus, or cytosol, as well as on the cell surface. The mechanisms by which galectin-1 traffics between cellular compartments, including its unconventional secretion and internalization processes, are poorly understood. Here, we determined the pathways by which exogenous galectin-1 enters cells and explored its capacity as a delivery vehicle for protein and siRNA therapeutics. We used a galectin-1-toxin conjugate, modelled on antibody-drug conjugates, as a selection tool in a genome-wide CRISPR screen. We discovered that galectin-1 interacts with the endosome-lysosome trafficking receptor sortilin in a glycan-dependent manner, which regulates galectin-1 trafficking to the lysosome. Further, we show that this pathway can be exploited for delivery of a functional siRNA. This study sheds light on the mechanisms by which galectin-1 is internalized by cells and suggests a new strategy for intracellular drug delivery via galectin-1 conjugation.

11.
Nat Mater ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957268

RESUMEN

Breast cancer becomes invasive when carcinoma cells invade through the basement membrane (BM)-a nanoporous layer of matrix that physically separates the primary tumour from the stroma. Single cells can invade through nanoporous three-dimensional matrices due to protease-mediated degradation or force-mediated widening of pores via invadopodial protrusions. However, how multiple cells collectively invade through the physiological BM, as they do during breast cancer progression, remains unclear. Here we developed a three-dimensional in vitro model of collective invasion of the BM during breast cancer. We show that cells utilize both proteases and forces-but not invadopodia-to breach the BM. Forces are generated from a combination of global cell volume expansion, which stretches the BM, and local contractile forces that act in the plane of the BM to breach it, allowing invasion. These results uncover a mechanism by which cells collectively interact to overcome a critical barrier to metastasis.

12.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014075

RESUMEN

Identifying transcriptional enhancers and their target genes is essential for understanding gene regulation and the impact of human genetic variation on disease1-6. Here we create and evaluate a resource of >13 million enhancer-gene regulatory interactions across 352 cell types and tissues, by integrating predictive models, measurements of chromatin state and 3D contacts, and largescale genetic perturbations generated by the ENCODE Consortium7. We first create a systematic benchmarking pipeline to compare predictive models, assembling a dataset of 10,411 elementgene pairs measured in CRISPR perturbation experiments, >30,000 fine-mapped eQTLs, and 569 fine-mapped GWAS variants linked to a likely causal gene. Using this framework, we develop a new predictive model, ENCODE-rE2G, that achieves state-of-the-art performance across multiple prediction tasks, demonstrating a strategy involving iterative perturbations and supervised machine learning to build increasingly accurate predictive models of enhancer regulation. Using the ENCODE-rE2G model, we build an encyclopedia of enhancer-gene regulatory interactions in the human genome, which reveals global properties of enhancer networks, identifies differences in the functions of genes that have more or less complex regulatory landscapes, and improves analyses to link noncoding variants to target genes and cell types for common, complex diseases. By interpreting the model, we find evidence that, beyond enhancer activity and 3D enhancer-promoter contacts, additional features guide enhancerpromoter communication including promoter class and enhancer-enhancer synergy. Altogether, these genome-wide maps of enhancer-gene regulatory interactions, benchmarking software, predictive models, and insights about enhancer function provide a valuable resource for future studies of gene regulation and human genetics.

13.
Science ; 382(6668): eadf6249, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37856615

RESUMEN

Targeted protein degradation can provide advantages over inhibition approaches in the development of therapeutic strategies. Lysosome-targeting chimeras (LYTACs) harness receptors, such as the cation-independent mannose 6-phosphate receptor (CI-M6PR), to direct extracellular proteins to lysosomes. In this work, we used a genome-wide CRISPR knockout approach to identify modulators of LYTAC-mediated membrane protein degradation in human cells. We found that disrupting retromer genes improved target degradation by reducing LYTAC recycling to the plasma membrane. Neddylated cullin-3 facilitated LYTAC-complex lysosomal maturation and was a predictive marker for LYTAC efficacy. A substantial fraction of cell surface CI-M6PR remains occupied by endogenous M6P-modified glycoproteins. Thus, inhibition of M6P biosynthesis increased the internalization of LYTAC-target complexes. Our findings inform design strategies for next-generation LYTACs and elucidate aspects of cell surface receptor occupancy and trafficking.


Asunto(s)
Lisosomas , Proteínas de la Membrana , Quimera Dirigida a la Proteólisis , Proteolisis , Receptor IGF Tipo 2 , Humanos , Células HeLa , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Proteínas Cullin/metabolismo , Quimera Dirigida a la Proteólisis/metabolismo
14.
Nat Commun ; 14(1): 5581, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37696852

RESUMEN

C9ORF72 hexanucleotide repeat expansion is the most common genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). One pathogenic mechanism is the accumulation of toxic dipeptide repeat (DPR) proteins like poly-GA, GP and GR, produced by the noncanonical translation of the expanded RNA repeats. However, how different DPRs are synthesized remains elusive. Here, we use single-molecule imaging techniques to directly measure the translation dynamics of different DPRs. Besides initiation, translation elongation rates vary drastically between different frames, with GP slower than GA and GR the slowest. We directly visualize frameshift events using a two-color single-molecule translation assay. The repeat expansion enhances frameshifting, but the overall frequency is low. There is a higher chance of GR-to-GA shift than in the reversed direction. Finally, the ribosome-associated protein quality control (RQC) factors ZNF598 and Pelota modulate the translation dynamics, and the repeat RNA sequence is important for invoking the RQC pathway. This study reveals that multiple translation steps modulate the final DPR production. Understanding repeat RNA translation is critically important to decipher the DPR-mediated pathogenesis and identify potential therapeutic targets in C9ORF72-ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , ARN/genética , Imagen Individual de Molécula , Dipéptidos , Proteínas Portadoras
15.
Cell Metab ; 35(10): 1814-1829.e6, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37699398

RESUMEN

Selectively ablating damaged cells is an evolving therapeutic approach for age-related disease. Current methods for genome-wide screens to identify genes whose deletion might promote the death of damaged or senescent cells are generally underpowered because of the short timescales of cell death as well as the difficulty of scaling non-dividing cells. Here, we establish "Death-seq," a positive-selection CRISPR screen optimized to identify enhancers and mechanisms of cell death. Our screens identified synergistic enhancers of cell death induced by the known senolytic ABT-263. The screen also identified inducers of cell death and senescent cell clearance in models of age-related diseases by a related compound, ABT-199, which alone is not senolytic but exhibits less toxicity than ABT-263. Death-seq enables the systematic screening of cell death pathways to uncover molecular mechanisms of regulated cell death subroutines and identifies drug targets for the treatment of diverse pathological states such as senescence, cancer, and fibrosis.


Asunto(s)
Senescencia Celular , Senoterapéuticos , Senescencia Celular/genética , Muerte Celular , Compuestos de Anilina
16.
Nature ; 622(7982): 359-366, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37758944

RESUMEN

The assembly of cortical circuits involves the generation and migration of interneurons from the ventral to the dorsal forebrain1-3, which has been challenging to study at inaccessible stages of late gestation and early postnatal human development4. Autism spectrum disorder and other neurodevelopmental disorders (NDDs) have been associated with abnormal cortical interneuron development5, but which of these NDD genes affect interneuron generation and migration, and how they mediate these effects remains unknown. We previously developed a platform to study interneuron development and migration in subpallial organoids and forebrain assembloids6. Here we integrate assembloids with CRISPR screening to investigate the involvement of 425 NDD genes in human interneuron development. The first screen aimed at interneuron generation revealed 13 candidate genes, including CSDE1 and SMAD4. We subsequently conducted an interneuron migration screen in more than 1,000 forebrain assembloids that identified 33 candidate genes, including cytoskeleton-related genes and the endoplasmic reticulum-related gene LNPK. We discovered that, during interneuron migration, the endoplasmic reticulum is displaced along the leading neuronal branch before nuclear translocation. LNPK deletion interfered with this endoplasmic reticulum displacement and resulted in abnormal migration. These results highlight the power of this CRISPR-assembloid platform to systematically map NDD genes onto human development and reveal disease mechanisms.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Trastornos del Neurodesarrollo , Femenino , Humanos , Recién Nacido , Embarazo , Movimiento Celular/genética , Sistemas CRISPR-Cas/genética , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Organoides/citología , Organoides/embriología , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Organoides/patología , Retículo Endoplásmico/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Transporte Activo de Núcleo Celular
17.
Science ; 381(6658): eade6289, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561850

RESUMEN

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factor 6 Similar a Kruppel , Melaninas , Melanocitos , Melanosomas , Pigmentación de la Piel , Humanos , Melaninas/biosíntesis , Melaninas/genética , Melanocitos/metabolismo , Melanosomas/metabolismo , Pigmentación de la Piel/genética , Estudio de Asociación del Genoma Completo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 6 Similar a Kruppel/genética , Factor 6 Similar a Kruppel/metabolismo , Endosomas/metabolismo , Animales , Ratones , Línea Celular Tumoral
18.
Cell Syst ; 14(9): 746-763.e5, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37543039

RESUMEN

Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Proteínas Represoras , Transcripción Genética , Humanos , Transcripción Genética/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica/genética , Genes Reporteros
19.
Dev Cell ; 58(18): 1782-1800.e10, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37494933

RESUMEN

Despite the key roles of perilipin-2 (PLIN2) in governing lipid droplet (LD) metabolism, the mechanisms that regulate PLIN2 levels remain incompletely understood. Here, we leverage a set of genome-edited human PLIN2 reporter cell lines in a series of CRISPR-Cas9 loss-of-function screens, identifying genetic modifiers that influence PLIN2 expression and post-translational stability under different metabolic conditions and in different cell types. These regulators include canonical genes that control lipid metabolism as well as genes involved in ubiquitination, transcription, and mitochondrial function. We further demonstrate a role for the E3 ligase MARCH6 in regulating triacylglycerol biosynthesis, thereby influencing LD abundance and PLIN2 stability. Finally, our CRISPR screens and several published screens provide the foundation for CRISPRlipid (http://crisprlipid.org), an online data commons for lipid-related functional genomics data. Our study identifies mechanisms of PLIN2 and LD regulation and provides an extensive resource for the exploration of LD biology and lipid metabolism.


Asunto(s)
Sistemas CRISPR-Cas , Gotas Lipídicas , Humanos , Perilipina-2/genética , Perilipina-2/metabolismo , Gotas Lipídicas/metabolismo , Sistemas CRISPR-Cas/genética , Metabolismo de los Lípidos/genética , Línea Celular
20.
Nat Chem ; 15(11): 1616-1625, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37460812

RESUMEN

Advances in chemoproteomic technology have revealed covalent interactions between small molecules and protein nucleophiles, primarily cysteine, on a proteome-wide scale. Most chemoproteomic screening approaches are indirect, relying on competition between electrophilic fragments and a minimalist electrophilic probe with inherently limited proteome coverage. Here we develop a chemoproteomic platform for direct electrophile-site identification based on enantiomeric pairs of clickable arylsulfonyl fluoride probes. Using stereoselective site modification as a proxy for ligandability in intact cells, we identify 634 tyrosines and lysines within functionally diverse protein sites, liganded by structurally diverse probes. Among multiple validated sites, we discover a chiral probe that modifies Y228 in the MYC binding site of the epigenetic regulator WDR5, as revealed by a high-resolution crystal structure. A distinct chiral probe stimulates tumour cell phagocytosis by covalently modifying Y387 in the recently discovered immuno-oncology target APMAP. Our work provides a deep resource of ligandable tyrosines and lysines for the development of covalent chemical probes.


Asunto(s)
Lisina , Proteoma , Lisina/química , Proteoma/química , Tirosina , Sitios de Unión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA