Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Circ Res ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39263750

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHOD: We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS: We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS: Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.

2.
Sci Rep ; 14(1): 9991, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693202

RESUMEN

Endothelial cells (ECs) have essential roles in cardiac tissue repair after myocardial infarction (MI). To establish stage-specific and long-term effects of the ischemic injury on cardiac ECs, we analyzed their transcriptome at landmark time points after MI in mice. We found that early EC response at Day 2 post-MI centered on metabolic changes, acquisition of proinflammatory phenotypes, initiation of the S phase of cell cycle, and activation of stress-response pathways, followed by progression to mitosis (M/G2 phase) and acquisition of proangiogenic and mesenchymal properties during scar formation at Day 7. In contrast, genes involved in vascular physiology and maintenance of vascular tone were suppressed. Importantly, ECs did not return to pre-injury phenotypes after repair has been completed but maintained inflammatory, fibrotic and thrombotic characteristics and lost circadian rhythmicity. We discovered that the highest induced transcript is the mammalian-specific Sh2d5 gene that promoted migration and invasion of ECs through Rac1 GTPase. Our results revealed a synchronized, temporal activation of disease phenotypes, metabolic pathways, and proliferation in quiescent ECs after MI, indicating that precisely-timed interventions are necessary to optimize cardiac tissue repair and improve outcomes. Furthermore, long-term effects of acute ischemic injury on ECs may contribute to vascular dysfunction and development of heart failure.


Asunto(s)
Células Endoteliales , Perfilación de la Expresión Génica , Infarto del Miocardio , Animales , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transcriptoma , Masculino , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Modelos Animales de Enfermedad , Proliferación Celular , Movimiento Celular/genética
3.
Exp Dermatol ; 28(11): 1328-1335, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31535738

RESUMEN

Tumor necrosis factor-α (TNF-α)-induced keratinocyte inflammation plays a key role in the pathogenesis of multiple inflammatory skin diseases. Here we investigated the anti-inflammatory effect of S-allyl cysteine (SAC) on TNF-α-induced HaCaT keratinocyte cells and the mechanism behind its anti-inflammatory potential. SAC was found to inhibit TNF-α-stimulated cytokine expression. Further, SAC was found to inhibit TNF-α-induced activation of p38, JNK and NF-κB pathways. Interestingly, SAC was found to differentially regulate ERK MAP kinase in cells. TNF-α-induced transient ERK activation and SAC treatment resulted in sustained ERK activation both in the presence and absence of TNF-α. Additionally, SAC failed to inhibit the TNF-α-induced expression of the pro-inflammatory cytokines TNF-α and IL-1ß when cells were treated with the MEK inhibitor PD98059, suggesting that the anti-inflammatory effect of SAC is via sustained activation of the ERK pathway. Since ERK activation has been reported to negatively regulate NF-κB-driven gene expression and we find that SAC activates ERK and negatively regulates NF-κB, we investigated whether there existed any crosstalk between the ERK and the NF-κB pathways. NF-κB-dependent reporter assay, visualization of the nuclear translocation of NF-κB-p65 subunit and determination of the cellular levels of I-κB, the inhibitor of NF-κB, revealed that SAC inhibited TNF-α-induced NF-κB activation, and PD98059 treatment reversed this effect. These results collectively suggest that SAC inhibits TNF-α-induced inflammation in HaCaT cells via a combined effect entailing the inhibition of the p38 and the JNK pathways and NF-κB pathway via the sustained activation of ERK.


Asunto(s)
Cisteína/análogos & derivados , Queratinocitos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Línea Celular Transformada , Cisteína/metabolismo , Humanos , Interleucina-1beta/metabolismo , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Biomed Res Int ; 2018: 3169431, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30515391

RESUMEN

Hydrogen peroxide (H2O2) mediated oxidative stress leading to hepatocyte apoptosis plays a pivotal role in the pathophysiology of several chronic liver diseases. This study demonstrates that S-allyl cysteine (SAC) renders cytoprotective effects on H2O2 induced oxidative damage and apoptosis in HepG2 cells. Cell viability assay showed that SAC protected HepG2 cells from H2O2 induced cytotoxicity. Further, SAC treatment dose dependently inhibited H2O2 induced apoptosis via decreasing the Bax/Bcl-2 ratio, restoring mitochondrial membrane potential (∆Ψm), inhibiting mitochondrial cytochrome c release, and inhibiting proteolytic cleavage of caspase-3. SAC protected cells from H2O2 induced oxidative damage by inhibiting reactive oxygen species accumulation and lipid peroxidation. The mechanism underlying the antiapoptotic and antioxidative role of SAC is the induction of the heme oxygenase-1 (HO-1) gene in an NF-E2-related factor-2 (Nrf-2) and Akt dependent manner. Specifically SAC was found to induce the phosphorylation of Akt and enhance the nuclear localization of Nrf-2 in cells. Our results were further confirmed by specific HO-1 gene knockdown studies which clearly demonstrated that HO-1 induction indeed played a key role in SAC mediated inhibition of apoptosis and ROS production in HepG2 cells, thus suggesting a hepatoprotective role of SAC in combating oxidative stress mediated liver diseases.


Asunto(s)
Hemo-Oxigenasa 1/genética , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/genética , Apoptosis/efectos de los fármacos , Cisteína/análogos & derivados , Cisteína/farmacología , Citoprotección/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno , Transducción de Señal , Activación Transcripcional/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA