RESUMEN
Communities in stream ecosystems often respond asymmetrically to increase and release of stressors, as indicated by slow and incomplete recovery. The Asymmetric Response Concept (ARC) posits that this is due to a shift in the relative importance of three mechanisms: tolerance, dispersal, and biotic interactions. In complex natural communities, these mechanisms may produce alternative outcomes through poorly understood indirect effects. To understand how the three mechanisms respond to different temporal stressor scenarios, we studied multiple scenarios using a stream food web model. We asked the following questions: Do groups of species decline as expected on the basis of individual tolerance rankings derived from laboratory experiments when they are embedded in a complex dynamic food web? Does the response of ecosystem function match that of communities? To address these questions, we aggregated data on individual tolerances at the level of functional groups and studied how single and multiple stressors affect food web dynamics and nutrient cycling. Multiple stressor scenarios involved different intensities of salt and temperature increase. Functional groups exhibited a different relative tolerance ranking between the laboratory and dynamic food web contexts. Salt as a single stressor had only minor and transient effects at low level but led to the loss of one or more functional groups at high level. In contrast, high temperature, alone or in combination with salt, caused the loss of functional groups at all tested levels. Patterns often differed between the response of communities and ecosystem function. We discuss our findings with respect to the ARC.
Asunto(s)
Cadena Alimentaria , Ríos , Estrés Fisiológico , Modelos Biológicos , Ecosistema , Monitoreo del Ambiente/métodosRESUMEN
Our capacity to predict trajectories of ecosystem degradation and recovery is limited, especially when impairments are caused by multiple stressors. Recovery may be fast or slow and either complete or partial, sometimes result in novel ecosystem states or even fail completely. Here, we introduce the Asymmetric Response Concept (ARC) that provides a basis for exploring and predicting the pace and magnitude of ecological responses to, and release from, multiple stressors. The ARC holds that three key mechanisms govern population, community and ecosystem trajectories. Stress tolerance is the main mechanism determining responses to increasing stressor intensity, whereas dispersal and biotic interactions predominantly govern responses to the release from stressors. The shifting importance of these mechanisms creates asymmetries between the ecological trajectories that follow increasing and decreasing stressor intensities. This recognition helps to understand multiple stressor impacts and to predict which measures will restore communities that are resistant to restoration.