Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Adv ; 8(7): eabj8618, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35171685

RESUMEN

Platelet deficiency, known as thrombocytopenia, can cause hemorrhage and is treated with platelet transfusions. We developed a system for the production of platelet precursor cells, megakaryocytes, from pluripotent stem cells. These cultures can be maintained for >100 days, implying culture renewal by megakaryocyte progenitors (MKPs). However, it is unclear whether the MKP state in vitro mirrors the state in vivo, and MKPs cannot be purified using conventional surface markers. We performed single-cell RNA sequencing throughout in vitro differentiation and mapped each state to its equivalent in vivo. This enabled the identification of five surface markers that reproducibly purify MKPs, allowing us insight into their transcriptional and epigenetic profiles. Last, we performed culture optimization, increasing MKP production. Together, this study has mapped parallels between the MKP states in vivo and in vitro and allowed the purification of MKPs, accelerating the progress of in vitro-derived transfusion products toward the clinic.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Plaquetas , Diferenciación Celular , Megacariocitos
2.
Stem Cell Reports ; 11(6): 1462-1478, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30503262

RESUMEN

The production of blood cells and their precursors from human pluripotent stem cells (hPSCs) in vitro has the potential to make a significant impact upon healthcare provision. We demonstrate that the forward programming of hPSCs through overexpression of GATA1, FLI1, and TAL1 leads to the production of a population of progenitors that can differentiate into megakaryocyte or erythroblasts. Using "rainbow" lentiviral vectors to quantify individual transgene expression in single cells, we demonstrate that the cell fate decision toward an erythroblast or megakaryocyte is dictated by the level of FLI1 expression and is independent of culture conditions. Early FLI1 expression is critical to confer proliferative potential to programmed cells while its subsequent silencing or maintenance dictates an erythroid or megakaryocytic fate, respectively. These committed progenitors subsequently expand and mature into megakaryocytes or erythroblasts in response to thrombopoietin or erythropoietin. Our results reveal molecular mechanisms underlying hPSC forward programming and novel opportunities for application to transfusion medicine.


Asunto(s)
Linaje de la Célula , Células Eritroides/citología , Factor de Transcripción GATA1/metabolismo , Megacariocitos/citología , Células Madre Pluripotentes/citología , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Cultivadas , Citocinas/farmacología , Células Eritroides/efectos de los fármacos , Células Eritroides/metabolismo , Eritropoyetina/farmacología , Silenciador del Gen , Humanos , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Trombopoyetina/farmacología , Transgenes
3.
EMBO Rep ; 19(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29661855

RESUMEN

Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.


Asunto(s)
GTP Fosfohidrolasas/fisiología , Fusión de Membrana , Mitocondrias/fisiología , Dinámicas Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas Mitocondriales/fisiología , Animales , Células Cultivadas , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Membrana Dobles de Lípidos/metabolismo , Ratones , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Dominios Proteicos
4.
Biomed Microdevices ; 19(3): 59, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28667400

RESUMEN

Tumor spheroids are a 3-D tumor model that holds promise for testing cancer therapies in vitro using microfluidic devices. Tailoring the properties of a tumor spheroid is critical for evaluating therapies over a broad range of possible indications. Using human colon cancer cells (HCT-116), we demonstrate controlled tumor spheroid growth rates by varying the number of cells initially seeded into microwell chambers. The presence of a necrotic core in the spheroids could be controlled by changing the glucose concentration of the incubation medium. This manipulation had no effect on the size of the tumor spheroids or hypoxia in the spheroid core, which has been predicted by a mathematical model in computer simulations of spheroid growth. Control over the presence of a necrotic core while maintaining other physical parameters of the spheroid presents an opportunity to assess the impact of core necrosis on therapy efficacy. Using micro-particle imaging velocimetry (micro-PIV), we characterize the hydrodynamics and mass transport of nanoparticles in tumor spheroids in a microfluidic device. We observe a geometrical dependence on the flow rate experienced by the tumor spheroid in the device, such that the "front" of the spheroid experiences a higher flow velocity than the "back" of the spheroid. Using fluorescent nanoparticles, we demonstrate a heterogeneous accumulation of nanoparticles at the tumor interface that correlates with the observed flow velocities. The penetration depth of these nanoparticles into the tumor spheroid depends on nanoparticle diameter, consistent with reports in the literature.


Asunto(s)
Neoplasias del Colon/metabolismo , Hidrodinámica , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Esferoides Celulares/metabolismo , Células A549 , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Humanos , Nanopartículas/química , Necrosis , Esferoides Celulares/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA