Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Mar Pollut Bull ; 206: 116697, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018822

RESUMEN

The abundance of micro (MPs) and nano (NPs) sized plastic particles in the ocean is concerning due to their harmful effects on marine life. The interactions between MPs and NPs in the marine environment and their impact on marine biota remain not fully understood. This study contributes with new insights into the interaction between polystyrene NPs (PSNPs) and polyethylene MPs (PEMPs) on the clam Ruditapes decussatus. Results showed ingestion of MPs and NPs by clams, with PSNPs demonstrating higher toxicity in hemolymph. While no genotoxicity was observed, clams treated with MPs and the mixture showed increased acetylcolinesterase (AchE) activity over time. Additionally, the antioxidant defense system mitigated oxidative stress, suggesting effective neutralization of reactive oxygen species. Hazard assessment indicated the greatest impact on clam digestive glands after ten days of exposure, with an antagonistic interaction between MPs and NPs noted.


Asunto(s)
Bivalvos , Microplásticos , Nanopartículas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Nanopartículas/toxicidad , Poliestirenos/toxicidad , Estrés Oxidativo , Plásticos/toxicidad , Polietileno/toxicidad
2.
Mar Pollut Bull ; 206: 116696, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39042981

RESUMEN

The activities of catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), and glutathione-S-transferase (GST) were evaluated in the gills (GI) and digestive gland (DG) of Magallana gigas oysters exposed to tamoxifen (TAM) at environmental concentrations of 10 and 100 ng L-1 for 1 and 4 days. A higher CAT activity in the GI and DG and higher GPx activity only in the DG was observed of oysters exposed to both concentrations after 1 day. Furthermore, a significant increase in GR and G6PDH, was detected in the DG after 1 day of exposure to 10 ng L-1 and only G6PDH activity increase after 1 day of exposure to 10 ng L-1 in the GI. This suggests that the DG is a tissue more sensitive to TAM exposure and was confirmed with the individual Integrated Biomarker Response version 2 index (IBRv2i), highlighting the acute stress caused by TAM and a cellular adaptation.


Asunto(s)
Catalasa , Glutatión Peroxidasa , Glutatión Reductasa , Glutatión Transferasa , Ostreidae , Tamoxifeno , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Tamoxifeno/toxicidad , Ostreidae/metabolismo , Ostreidae/efectos de los fármacos , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Branquias/efectos de los fármacos , Branquias/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Biomarcadores/metabolismo
3.
J Hazard Mater ; 473: 134479, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38762985

RESUMEN

Once in the marine environment, fishing nets and cables undergo weathering, breaking down into micro and nano-size particles and leaching plastic additives, which negatively affect marine biota. This study aims to unravel the ecotoxicological impact of different concentrations of leachate obtained from abandoned or lost fishing nets and cables in the mussel Mytilus galloprovincialis under long-term exposure (28 days). Biochemical biomarkers linked to antioxidant defense system, xenobiotic biotransformation, oxidative damage, genotoxicity, and neurotoxicity were evaluated in different mussel tissues. The chemical nature of the fishing nets and cables and the chemical composition of the leachate were assessed and metals, plasticizers, UV stabilizers, flame retardants, antioxidants, dyes, flavoring agents, preservatives, intermediates and photo initiators were detected. The leachate severely affected the antioxidant and biotransformation systems in mussels' tissues. Following exposure to 1 mg·L-1 of leachate, mussels' defense system was enhanced to prevent oxidative damage. In contrast, in mussels exposed to 10 and 100 mg·L-1 of leachate, defenses failed to overcome pro-oxidant molecules, resulting in genotoxicity and oxidative damage. Principal component analysis (PCA) and Weight of Evidence (WOE) evaluation confirmed that mussels were significantly affected by the leachate being the hazard of the leachate concentrations of 10 mg·L-1 ranked as major, while 1 and 100 mg·L-1 was moderate. These results highlighted that the leachate from fishing nets and cables can be a threat to the heath of the mussel M. galloprovincialis.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/efectos de los fármacos , Mytilus/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Biomarcadores/metabolismo , Antioxidantes/metabolismo , Ecotoxicología , Daño del ADN/efectos de los fármacos
5.
Anal Bioanal Chem ; 414(19): 5877-5886, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661234

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to be the main pharmaceutical class accumulated in seafood. Among them, ibuprofen (IBU) is of special concern as it is used worldwide to treat common pain, does not require a medical prescription, it is often taken in a high daily dose, and has been reported to cause potential adverse effects on aquatic organisms. IBU is highly transformed into hydroxy- and carboxy-metabolites and/or degradation products generated not only after its administration but also during wastewater treatment or in the environment. These compounds can be present in the environment at higher concentrations than IBU and present higher toxicity. In this work, a low-cost and affordable routine analytical method was developed and validated for the first-time determination of IBU and its main metabolites in mussels. The method is based on ultrasound-assisted extraction (UAE), clean-up by dispersive solid-phase extraction (d-SPE) and analytical determination by liquid chromatography-tandem mass spectrometry. Box-Behnken experimental design was used for method optimisation to better evaluate the influence and interactions of UAE and d-SPE variables. Extraction recoveries were in the range from 81 to 115%. Precision, expressed as relative standard deviation, was lower than 7%. Method detection limits were in the range from 0.1 to 1.9 ng g-1 dry weight. The method was successfully applied to wild mussels.


Asunto(s)
Bivalvos , Ibuprofeno , Animales , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección , Alimentos Marinos , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos
6.
Chemosphere ; 305: 135462, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35753414

RESUMEN

The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 µg/L), polystyrene nanoparticles (nPS; 50 nm; 10 µg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.


Asunto(s)
Citostáticos , Nanopartículas del Metal , Mytilus , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Citostáticos/toxicidad , Fluorouracilo/toxicidad , Glutatión/farmacología , Peroxidación de Lípido , Nanopartículas del Metal/toxicidad , Mytilus/metabolismo , Estrés Oxidativo , Plata/toxicidad , Contaminantes Químicos del Agua/análisis
7.
Biomolecules ; 12(1)2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35053226

RESUMEN

This study investigated the ecotoxicological effects of differently sized (4-6 µm and 20-25 µm) low-density polyethylene (LDPE) microplastics (MPs), with and without adsorbed benzo-a-pyrene (BaP), in clam Scrobicularia plana. Biomarkers of oxidative stress (superoxide dismutase-SOD; catalase-CAT), biotransformation (glutathione-S-transferases-GST), oxidative damage (lipid peroxidation-LPO) and neurotoxicity (acetylcholinesterase-AChE) were analysed in gills and digestive glands at different time intervals for a total of 14 days of exposure. In order to have a better impact perspective of these contaminants, an integrated biomarker response index (IBR) and Health Index were applied. Biomarker alterations are apparently more related to smaller sized (4-6 µm) MPs in gills and to virgin LDPE MPs in the digestive gland according to IBR results, while the digestive gland was more affected by these MPs according to the health index.


Asunto(s)
Benzo(a)pireno/toxicidad , Bivalvos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales
8.
Chemosphere ; 287(Pt 4): 132356, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34600009

RESUMEN

Nanoplastics (NP) (1-100 nm) are a growing global concern, and their adverse effects in marine organisms are still scarce. This study evaluated the effects of polystyrene nanoplastics (10 µg/L; 50 nm nPS) in the marine mussel Mytilus galloprovincialis after a 21 - day exposure. The hydrodynamic diameter and zeta potential of nPS were analysed, over time, in seawater and ultrapure water. A multibiomarker approach (genotoxicity (the comet assay) was assessed in mussel haemocytes, and the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)), biotransformation enzyme (glutathione - S - transferase (GST)), and oxidative damage (LPO)) was assessed in gills and digestive glands to evaluate the toxicity of nPS towards mussels. In seawater, aggregation of nPS is favoured and consequently the hydrodynamic diameter increases. Genotoxicity was highly noticeable in mussels exposed to nPS, presenting a higher % tail DNA when compared to controls. Antioxidant enzymes are overwhelmed after nPS exposure, leading to oxidative damage in both tissues. Results showed that mussel tissues are incapable of dealing with the effects that this emerging stressor pursues towards the organism. The Integrated Biomarker Response index, used to summarise the biomarkers analysed into one index, shows that nPS toxicity towards mussels are both tissue and time dependent, being that gills are the tissue most compromised.


Asunto(s)
Mytilus , Nanopartículas , Contaminantes Químicos del Agua , Animales , Biomarcadores/metabolismo , Branquias/metabolismo , Mytilus/metabolismo , Nanopartículas/toxicidad , Estrés Oxidativo , Poliestirenos/metabolismo , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad
9.
Environ Pollut ; 273: 116426, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33493763

RESUMEN

Emerging contaminants, such as nanoplastics, are gaining a vast interest within the scientific community. Most of the plastic debris found in the marine environment originates from land-based sources, and once in the marine environment, plastic can be degraded into smaller fragments. Nanoplastics are considered to fall within the definition of other nanoparticles (1-100 nm in size) and may be divided into primary or secondary nanoplastics. Primary nanoplastics are those that enter the environment in their original small size associated with specific applications and consumer products, whilst secondary nanoplastics are a consequence of macro/microplastic degradation. The formation of nanoplastics changes the physical-chemical characteristics of the particle, thus at a nanoscale, it is expected that the strength, conductivity, and reactivity of the nanoparticles will differ substantially from macro/micro-sized particles. To date, the toxicity nanoplastics may pursue on marine biota is still scarce. Herein, a review of the available data on the effects of different polymer types of nanoplastics specific to marine biota is accounted for.

10.
Chemosphere ; 261: 127678, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32717509

RESUMEN

The rise of cancer cases worldwide led to an increase in production and consumption of anticancer drugs, that ultimately end up in the marine environment and are accumulated in aquatic organisms. Cyclophosphamide (CP) is a cytotoxic alkylating agent frequently prescribed in cancer treatments. This study assess ecotoxicological effects of CP on mussels Mytilus galloprovincialis, through in vivo and ex vivo approaches and compares the sensitivity of mussel haemocytes with well-established human cell lines (RPE and HeLa). Mussels were exposed in vivo to CP (1000 ng L-1) and several biomarkers analysed in gills and digestive glands namely neurotoxicity (AChE activity), oxidative stress (GPx activity), biotransformation (GST activity), lipid peroxidation (LPO) and apoptosis (caspase activity), whereas genotoxicity was determined in mussels' haemocytes. Cytotoxicity was also assessed in haemocytes (in vivo and ex vivo) and human cell lines (in vitro) exposed to a range of CP concentrations (50, 100, 250, 500 and 1000 ng L-1) over 24 h, via neutral red assay. In in vivo exposure, detoxification of CP did not efficiently occur in the gills while in digestive glands GPx and GST activities were induced, jointly with a decrease in lipid peroxidation, indicating a potential outcome of the protective antioxidant mechanisms, whereas no apoptosis was noted. Moreover, cytotoxicity and DNA damage were detected in haemocytes. The ex vivo exposure haemocytes to CP caused cytotoxicity (from 100 ng L-1), whereas no effects occurred in human cell lines. This suggests that, at relevant environmental concentrations, CP cause subtle and irreversible impacts on M. galloprovincialis.


Asunto(s)
Antineoplásicos/toxicidad , Ciclofosfamida/toxicidad , Mytilus/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Organismos Acuáticos/metabolismo , Biomarcadores/metabolismo , Biotransformación , Línea Celular , Daño del ADN , Ecotoxicología , Branquias/metabolismo , Humanos , Peroxidación de Lípido , Mytilus/metabolismo , Estrés Oxidativo/efectos de los fármacos , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA