RESUMEN
We present a novel multi-shell position-orientation adaptive smoothing (msPOAS) method for diffusion weighted magnetic resonance data. Smoothing in voxel and diffusion gradient space is embedded in an iterative adaptive multiscale approach. The adaptive character avoids blurring of the inherent structures and preserves discontinuities. The simultaneous treatment of all q-shells improves the stability compared to single-shell approaches such as the original POAS method. The msPOAS implementation simplifies and speeds up calculations, compared to POAS, facilitating its practical application. Simulations and heuristics support the face validity of the technique and its rigorousness. The characteristics of msPOAS were evaluated on single and multi-shell diffusion data of the human brain. Significant reduction in noise while preserving the fine structure was demonstrated for diffusion weighted images, standard DTI analysis and advanced diffusion models such as NODDI. MsPOAS effectively improves the poor signal-to-noise ratio in highly diffusion weighted multi-shell diffusion data, which is required by recent advanced diffusion micro-structure models. We demonstrate the superiority of the new method compared to other advanced denoising methods.
Asunto(s)
Artefactos , Mapeo Encefálico/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Humanos , Modelos TeóricosRESUMEN
We introduce an algorithm for diffusion weighted magnetic resonance imaging data enhancement based on structural adaptive smoothing in both voxel space and diffusion-gradient space. The method, called POAS, does not refer to a specific model for the data, like the diffusion tensor or higher order models. It works by embedding the measurement space into a space with defined metric, in this case the Lie group of three-dimensional Euclidean motion SE(3). Subsequently, pairwise comparisons of the values of the diffusion weighted signal are used for adaptation. POAS preserves the edges of the observed fine and anisotropic structures. It is designed to reduce noise directly in the diffusion weighted images and consequently also to reduce bias and variability of quantities derived from the data for specific models. We evaluate the algorithm on simulated and experimental data and demonstrate that it can be used to reduce the number of applied diffusion gradients and hence acquisition time while achieving a similar quality of data, or to improve the quality of data acquired in a clinically feasible scan time setting.