Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(12): 1501, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985507

RESUMEN

Erosion of soil refers to the process of detaching and transporting topsoil from the land surface by natural forces such as water, wind, and other factors. As a result of this process, soil fertility is lost, water bodies' depth is reduced, water turbidity rises, and flood hazard problems, etc. Using a numerical model of erosion rates and erosion risks in the Jejebe watershed of the Baro Akobo basin in western Ethiopia, this study mapped erosion risks to prioritize conservation measures. In this study, the Revised Universal Soil Loss Equation (RUSLE) model was used, which was adapted to Ethiopian conditions. To estimate soil loss with RUSLE, the rainfall erosivity (R) factor was generated by interpolating rainfall data, the soil erodibility (K) factor was derived from the soil map, the topography (LS) factor was determined from the digital elevation model (DEM), cover and management (C) factor derived from the land use/cover data, and conservation practices (P) factor generated from digital elevation model (DEM) and land use/cover data were integrated with remote sensing data and the GIS 10.5 environment. The findings indicated that the watershed annual soil loss varies from nearly 0 on a gentle slope of forest lands to 265.8 t ha-1 year-1 in the very steep slope upper part of the watershed, with a mean annual soil loss of 36.2 t ha-1 year-1. The total annual soil loss in the watershed is estimated to be around 919,886.5 tons per year. To minimize the amount of soil erosion in the watershed that had been most severely affected, we identified eight conservation strategies that could be implemented. These strategies were based on the participatory watershed development (PWD) principles established by the Ethiopian government and the severity of the erosion in the watershed. The study's findings showed that a GIS-based RUSLE soil erosion assessment model can provide a realistic prediction of the amount of soil loss that will occur in the watershed. This tool can also help identify the priority areas for implementing effective erosion control measures.


Asunto(s)
Erosión del Suelo , Suelo , Sistemas de Información Geográfica , Etiopía , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Modelos Teóricos , Agua
2.
J Hum Evol ; 99: 93-106, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27650582

RESUMEN

One approach to understanding the context of changes in hominin paleodiets is to examine the paleodiets and paleohabitats of contemporaneous mammalian taxa. Recent carbon isotopic studies suggest that the middle Pliocene was marked by a major shift in hominin diets, characterized by a significant increase in C4 foods in Australopithecus-grade species, including Australopithecus afarensis. To contextualize previous isotopic studies of A. afarensis, we employed stable isotopes to examine paleodiets of the mammalian fauna contemporaneous with A. afarensis at Hadar, Ethiopia. We used these data to inform our understanding of paleoenvironmental change through the deposition of the Hadar Formation. While the majority of the taxa in the Hadar fauna were C4 grazers, most show little change in the intensity of C4 food consumption over the 0.5 million-year interval sampled. Two taxa (equids and bovins) do show increases in C4 consumption through the Hadar Formation and into the younger, overlying Busidima Formation. Changes in the distributions of C4-feeders, C3-feeders and mixed-C3/C4-feeders in the sampled intervals are consistent with evidence of dietary reconstructions based on ecomorphology, and with habitats reconstructed using community structure analyses. Meanwhile, A. afarensis is one of many mammalian taxa whose C4 consumption does not show directional change over the intervals sampled. In combination with a wide range of carbon and oxygen isotopic composition for A. afarensis as compared to the other large mammal taxa, these results suggest that the C3/C4 dietary flexibility of A. afarensis was relatively unusual among most of its mammalian cohort.


Asunto(s)
Dieta , Hominidae/anatomía & histología , Hominidae/clasificación , Animales , Isótopos de Carbono/análisis , Esmalte Dental/química , Etiopía , Fósiles , Oxígeno/metabolismo
3.
J Hum Evol ; 88: 127-136, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341031

RESUMEN

Preservation of the stable carbon isotopic composition of fossil tooth enamel enables us to estimate the relative proportion of C3 versus C4 vegetation in an animal's diet, which, combined with analysis of faunal abundance, may provide complementary methods of paleoenvironmental reconstruction. To this end, we analyzed stable carbon isotopic composition (δ(13)C values) of tooth enamel from four bovid tribes (Tragelaphini, Aepycerotini, Reduncini, and Alcelaphini) derived from six members of the Shungura Formation (Members B, C, D, F, G, and L; ages from ca. 2.90-1.05 Ma (millions of years ago) in the Lower Omo Valley of southwestern Ethiopia. The bovids show a wide range of δ(13)C values within taxa and stratigraphic members, as well as temporal changes in the feeding strategies of taxa analyzed throughout the middle to late Pliocene and early Pleistocene. Such variation suggests that the use of actualistic approaches for paleoenvironmental reconstruction may not always be warranted. Alcelaphini was the only taxon analyzed that retained a consistent dietary preference throughout the sequence, with entirely C4-dominated diets. Reduncini had a mixed C3/C4 to C4-dominated diet prior to 2.4 Ma, after which this taxon shifted to a largely C4-dominated diet. Aepycerotini generally showed a mixed C3/C4 diet, with a period of increased C4 diet from 2.5 to 2.3 Ma. Tragelaphini showed a range of mixed C3/C4 diets, with a median value that was briefly nearer the C4 end member from 2.9 to 2.4 Ma but was otherwise towards the C3 end member. These isotopic results, combined with relative abundance data for these bovids, imply that the environment of the Lower Omo Valley consisted of a mosaic of closed woodlands, with riverine forests and open grasslands. However, our data also signify that the overall environment gradually became more open, and that C4 grasses became more dominant. Finally, these results help document the range and extent of environments and potential diets that were available to the four hominin species encountered in the Shungura sequence.


Asunto(s)
Esmalte Dental/química , Dieta , Fósiles , Rumiantes/fisiología , Animales , Evolución Biológica , Isótopos de Carbono/análisis , Ecosistema , Etiopía , Paleontología
4.
Proc Natl Acad Sci U S A ; 110(26): 10495-500, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23733965

RESUMEN

The enhanced dietary flexibility of early hominins to include consumption of C4/crassulacean acid metabolism (CAM) foods (i.e., foods derived from grasses, sedges, and succulents common in tropical savannas and deserts) likely represents a significant ecological and behavioral distinction from both extant great apes and the last common ancestor that we shared with great apes. Here, we use stable carbon isotopic data from 20 samples of Australopithecus afarensis from Hadar and Dikika, Ethiopia (>3.4-2.9 Ma) to show that this species consumed a diet with significant C4/CAM foods, differing from its putative ancestor Au. anamensis. Furthermore, there is no temporal trend in the amount of C4/CAM food consumption over the age of the samples analyzed, and the amount of C4/CAM food intake was highly variable, even within a single narrow stratigraphic interval. As such, Au. afarensis was a key participant in the C4/CAM dietary expansion by early australopiths of the middle Pliocene. The middle Pliocene expansion of the eastern African australopith diet to include savanna-based foods represents a shift to use of plant food resources that were already abundant in hominin environments for at least 1 million y and sets the stage for dietary differentiation and niche specialization by subsequent hominin taxa.


Asunto(s)
Dieta/historia , Hominidae , Animales , Etiopía , Fósiles , Historia Antigua , Hominidae/anatomía & histología , Hominidae/fisiología , Plantas Comestibles/química , Plantas Comestibles/metabolismo
5.
J Hum Evol ; 64(1): 21-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23199576

RESUMEN

Carbon and oxygen isotopes of mammalian tooth enamel were used to reconstruct paleoenvironments of Australopithecus afarensis from the middle Pliocene locality of Dikika, Ethiopia. Isotopic analyses were conducted on 210 mammalian herbivore teeth from 15 different taxa collected from the Basal Member (~3.8-3.42 Ma) and Sidi Hakoma Member (3.42-3.24 Ma) of the Hadar Formation. The isotopic analyses aim specifically at reconstructing shifts in the relative abundance of C(4) grasses in mammalian diets, and more generally at paleoclimate factors such as aridity and seasonality, as well as habitat structure. Carbon isotopic data suggest a wide range of foraging strategies, characterized by mixed C(3)/C(4) to C(4)-dominated diets in wooded grasslands to open woodlands. Weighted average C(4) dietary proportions range between 60% and 86% in the Basal Member and 49% and 74% in the Sidi Hakoma Member. Paleoclimatic conditions based on the reconstructed mean annual water deficit from the δ(18)O(enamel) values indicate a wetter climate as compared to either the early Pliocene or the Pleistocene nearby. The middle Pliocene habitat structure at Dikika could be as diverse as open grassland and wooded grassland, and woodland to forest in the Sidi Hakoma Member while wooded grassland, woodland to grassland are evident in the Basal Member. All habitats except closed woodland and forest are persistent through both members; however, the relative proportion of individual habitats changed through time. These changes could have put the fauna in competition for preferred habitats and food resources, which could have forced migration, adaptation to other resources and/or extinction. Thus, the existence of A. afarensis throughout the middle Pliocene indicates either this species might have adapted to a wide range of habitats, or its preferred habitat was not affected by the observed environmental changes.


Asunto(s)
Esmalte Dental/química , Fósiles , Hominidae/anatomía & histología , Hominidae/fisiología , Animales , Antropología Física , Isótopos de Carbono/análisis , Dieta , Ambiente , Etiopía , Isótopos de Oxígeno/análisis , Diente/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA