Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Trends Microbiol ; 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37973432

RESUMEN

Nitrification is a key microbial process in the nitrogen (N) cycle that converts ammonia to nitrate. Excessive nitrification, typically occurring in agroecosystems, has negative environmental impacts, including eutrophication and greenhouse gas emissions. Nitrification inhibitors (NIs) are widely used to manage N in agricultural systems by reducing nitrification rates and improving N use efficiency. However, the effectiveness of NIs can vary depending on the soil conditions, which, in turn, affect the microbial community and the balance between different functional groups of nitrifying microorganisms. Understanding the mechanisms underlying the effectiveness of NIs, and how this is affected by the soil microbial communities or abiotic factors, is crucial for promoting sustainable fertilizer practices. Therefore, this review examines the different types of NIs and how abiotic parameters can influence the nitrifying community, and, therefore, the efficacy of NIs. By discussing the latest research in this field, we provide insights that could facilitate the development of more targeted, efficient, or complementary NIs that improve the application of NIs for sustainable management practices in agroecosystems.

2.
J Environ Manage ; 346: 118996, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37725864

RESUMEN

Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms. Here, to identify broad-spectrum nitrification inhibitors, we adopted a drug discovery-based approach and screened 45,400 small molecules on different groups of nitrifying microorganisms. Although a high number of potential nitrification inhibitors were identified, none of them targeted all nitrifier groups. Moreover, a high number of new nitrification inhibitors were shown to be highly effective in culture but did not reduce ammonia consumption in soil. One archaea-targeting inhibitor was not only effective in soil, but even reduced - when co-applied with a bacteria-targeting inhibitor - ammonium consumption and greenhouse gas emissions beyond what is achieved with currently applied nitrification inhibitors. This advocates for combining different types of nitrification inhibitors in EEFs to optimize N management practices and make agriculture more sustainable.

3.
Front Plant Sci ; 14: 1283047, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259951

RESUMEN

Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2 -) and then to nitrate (NO3 -). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3 - leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.

4.
Curr Opin Biotechnol ; 50: 166-173, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29414056

RESUMEN

Nitrogen is one of the most important nutrients for plant growth and hence heavily applied in agricultural systems via fertilization. Nitrification, that is, the conversion of ammonium via nitrite to nitrate by soil microorganisms, however, leads to nitrate leaching and gaseous nitrous oxide production and as such to an up to 50% loss of nitrogen availability for the plant. Nitrate leaching also results in eutrophication of groundwater, drinking water and recreational waters, toxic algal blooms and biodiversity loss, while nitrous oxide is a greenhouse gas with a global warming potential 300× greater than carbon dioxide. Logically, inhibition of nitrification is an important strategy used in agriculture to reduce nitrogen losses, and contributes to a more environmental-friendly practice. However, recently identified and crucial players in nitrification, that is, ammonia-oxidizing archaea and comammox bacteria, seem to be under-investigated in this respect. In this review, we give an update on the different pathways in ammonia oxidation, the relevance for agriculture and the interaction with nitrification inhibitors. As such, we hope to pinpoint possible strategies to optimize the efficiency of nitrification inhibition.


Asunto(s)
Agricultura , Nitrificación , Suelo , Amoníaco/metabolismo , Bacterias/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA