Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Chem Phys ; 160(19)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38747430

RESUMEN

In this research, thermal modeling has been done to investigate the effect of nanofluid on the performance of the linear parabolic collector. Therminol vapor/liquid phase fluid (VP-1) has been used as a base fluid; iron oxide nanoparticles have been used to produce mono-nanofluid; and iron oxide multi-walled carbon nanotubes nanocomposite has been used as nanoparticles to produce hybrid nanofluid. The fluid flow inside the absorber tube of the collector is assumed to be turbulent. The results show that when hybrid nanofluid and mono-nanofluid are used, the energy and exergy efficiencies of the collector are higher than those for the conditions of using the base fluid, but their amount is slightly lower with the use of hybrid nanofluid than when the working fluid is mono-nanofluid. According to the obtained results, the highest energy efficiency of the linear parabolic collector using nanofluid and mono-nanofluid is 70.2% and 70.4%, respectively, and the highest exergy efficiency is 35.7% and 35.9%, respectively. Despite this, the friction coefficient of mono-nanofluid compared to hybrid nanofluid was obtained on average about 9% higher. The results showed that the criterion for evaluating the performance of the collector (hydrodynamic thermal efficiency) when hybrid nanofluid is used is more than when mono-nanofluid is used.

2.
Georgian Med News ; (340-341): 101-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37805882

RESUMEN

"Every year, many individuals with tissue or organ problems require urgent care due to medical emergencies, burns, congenital anomalies, and other causes". Regenerative medicine was created because there aren't enough donors, issues with graft rejection, and insufficient organs or tissues for patients to replace, repair, and regenerate. However, significant tissue defects are difficult to fill with injections alone, making stem cell therapy a crucial component of the area of regenerative medicine. To achieve the intended outcome, the researchers combine stem cells with three-dimensional (3D) printed organs tissue engineering scaffolding. These scaffolds can resemble bone, cartilage, or "extracellular matrix (ECM)" in that they provide structural support and promote adhesion, proliferation, and differentiation, finally resulting in the production of functional tissues or organs. In this study on stem cell regenerative medicine, the therapeutic focused mostly on scaffolding for 3D printed organ tissue engineering. The following applications are demonstrated and compared using various 3D printing processes and starting materials. Then, we go over the benefits of 3D printing over conventional methods, touch on certain issues and restrictions, and make some assumptions about potential applications in the future.


Asunto(s)
Órganos Artificiales , Ingeniería de Tejidos , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Impresión Tridimensional , Tratamiento Basado en Trasplante de Células y Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA