Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 14(1): 10063, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698187

RESUMEN

Ultra high frequency (UHF) ultrasound enables the visualization of very small structures that cannot be detected by conventional ultrasound. The utilization of UHF imaging as a new imaging technique for the 3D-in-vivo chorioallantoic membrane (CAM) model can facilitate new insights into tissue perfusion and survival. Therefore, human renal cystic tissue was grafted onto the CAM and examined using UHF ultrasound imaging. Due to the unprecedented resolution of UHF ultrasound, it was possible to visualize microvessels, their development, and the formation of anastomoses. This enabled the observation of anastomoses between human and chicken vessels only 12 h after transplantation. These observations were validated by 3D reconstructions from a light sheet microscopy image stack, indocyanine green angiography, and histological analysis. Contrary to the assumption that the nutrient supply of the human cystic tissue and the gas exchange happens through diffusion from CAM vessels, this study shows that the vasculature of the human cystic tissue is directly connected to the blood vessels of the CAM and perfusion is established within a short period. Therefore, this in-vivo model combined with UHF imaging appears to be the ideal platform for studying the effects of intravenously applied therapeutics to inhibit renal cyst growth.


Asunto(s)
Membrana Corioalantoides , Riñón Poliquístico Autosómico Dominante , Ultrasonografía , Animales , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/diagnóstico por imagen , Humanos , Riñón Poliquístico Autosómico Dominante/diagnóstico por imagen , Ultrasonografía/métodos , Pollos , Riñón/diagnóstico por imagen , Riñón/irrigación sanguínea , Imagenología Tridimensional/métodos
2.
Nature ; 623(7988): 772-781, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968388

RESUMEN

Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.


Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de Enfermedad
3.
JCI Insight ; 8(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37698920

RESUMEN

Superficial erythematous cutaneous vascular malformations are assumed to be blood vascular in origin, but cutaneous lymphatic malformations can contain blood and appear red. Management may be different and so an accurate diagnosis is important. Cutaneous malformations were investigated through 2D histology and 3D whole-mount histology. Two lesions were clinically considered as port-wine birthmarks and another 3 lesions as erythematous telangiectasias. The aims were (i) to demonstrate that cutaneous erythematous malformations including telangiectasia can represent a lymphatic phenotype, (ii) to determine if lesions represent expanded but otherwise normal or malformed lymphatics, and (iii) to determine if the presence of erythrocytes explained the red color. Microscopy revealed all lesions as lymphatic structures. Port-wine birthmarks proved to be cystic lesions, with nonuniform lymphatic marker expression and a disconnected lymphatic network suggesting a lymphatic malformation. Erythematous telangiectasias represented expanded but nonmalformed lymphatics. Blood within lymphatics appeared to explain the color. Blood-lymphatic shunts could be detected in the erythematous telangiectasia. In conclusion, erythematous cutaneous capillary lesions may be lymphatic in origin but clinically indistinguishable from blood vascular malformations. Biopsy is advised for correct phenotyping and management. Erythrocytes are the likely explanation for color accessing lymphatics through lympho-venous shunts.


Asunto(s)
Telangiectasia , Malformaciones Vasculares , Humanos , Malformaciones Vasculares/diagnóstico , Capilares , Venas , Telangiectasia/diagnóstico
4.
Biomolecules ; 13(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371590

RESUMEN

The placenta is the first embryonic organ, representing the connection between the embryo and the mother, and is therefore necessary for the embryo's growth and survival. To meet the ever-growing need for nutrient and gas exchange, the maternal spiral arteries undergo extensive remodeling, thus increasing the uteroplacental blood flow by 16-fold. However, the insufficient remodeling of the spiral arteries can lead to severe pregnancy-associated disorders, including but not limited to pre-eclampsia. Insufficient endovascular trophoblast invasion plays a key role in the manifestation of pre-eclampsia; however, the underlying processes are complex and still unknown. Classical histopathology is based on two-dimensional section microscopy, which lacks a volumetric representation of the vascular remodeling process. To further characterize the uteroplacental vascularization, a detailed, non-destructive, and subcellular visualization is beneficial. In this study, we use light sheet microscopy for optical sectioning, thus establishing a method to obtain a three-dimensional visualization of the vascular system in the placenta. By introducing a volumetric visualization method of the placenta, we could establish a powerful tool to deeply investigate the heterogeneity of the spiral arteries during the remodeling process, evaluate the state-of-the-art treatment options, effects on vascularization, and, ultimately, reveal new insights into the underlying pathology of pre-eclampsia.


Asunto(s)
Preeclampsia , Complicaciones del Embarazo , Humanos , Embarazo , Femenino , Placenta/irrigación sanguínea , Preeclampsia/patología , Microscopía , Trofoblastos/patología , Arterias/patología
5.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457187

RESUMEN

High-quality three-dimensional (3D) microscopy allows detailed, unrestricted and non-destructive imaging of entire volumetric tissue specimens and can therefore increase the diagnostic accuracy of histopathological tissue analysis. However, commonly used IgG antibodies are oftentimes not applicable to 3D imaging, due to their relatively large size and consequently inadequate tissue penetration and penetration speed. The lack of suitable reagents for 3D histopathology can be overcome by an emerging class of single-domain antibodies, referred to as nanobodies (Nbs), which can facilitate rapid and superior 2D and 3D histological stainings. Here, we report the generation and experimental validation of Nbs directed against the human endothelial cell-selective adhesion molecule (hESAM), which enables spatial visualization of blood vascular networks in whole-mount 3D imaging. After analysis of Nb binding properties and quality, selected Nb clones were validated in 2D and 3D imaging approaches, demonstrating comparable staining qualities to commercially available hESAM antibodies in 2D, as well as rapid and complete staining of entire specimens in 3D. We propose that the presented hESAM-Nbs can serve as novel blood vessel markers in academic research and can potentially improve 3D histopathological diagnostics of entire human tissue specimens, leading to improved treatment and superior patient outcomes.


Asunto(s)
Anticuerpos de Dominio Único , Células Endoteliales/metabolismo , Humanos , Imagenología Tridimensional/métodos , Anticuerpos de Dominio Único/metabolismo , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA